
AD-A256 564 0
AFIT/GE/ENG/92-M"01

DTIC
OCT28 1992,3

CU;

IMPLEMENTATION AND ANALYSIS OF NP-COMPLETE ALGORITHMS ON

A DISTRIBUTED MEMORY COMPUTER

THESIS

Joel Shane Garmon
Captain, USAF

AFIT/GE/ENG/92-M

CA

00
Approved for public release; distrii~ution unlimited

AFIT/GE/ENG/92-M-OI

IMPLEMENTATION AND ANALYSIS OF NP-COMPLETE ALGORITHMS ON

A DISTRIBUTED MEMORY COMPUTER

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Joel Shane Garinon,

Captain, USAF _.

DisDi

March, 1992

Approved for public release; (list ributlion unlimited

*2 10 27 107

Table of Contents

Page

Table of Contents ii

List of Figures vi

List of Tables ix

Abstract x

I. Introduction 1-1

1.1 General Problem Statement 1-1

1.2 Background 1-2

1.3 Scope 1-4

1.4 Summary of the Thesis 1-6

I1. Background and Requirements 2-1

2.1 Introduction 2-1

2.2 NP-Complete 2-1

2.3 Parallel Architectures 2-4

2.3.1 Ilypercube Architecture 2-6

2.3.2 Granularity. 2-6

2.1 Parallel Search Issues 2-9

2.4.1 Global Variable Communication 2-9

2.4.2 Task Allocation Methods 2-10

2.4.3 Limits on Speedup and Efficiency 2-11

2.5 General Search Techniques 2-12

2.5.1 -;Greedy Method 2-12

2.5.2 U.lninformed Search 2-12

ii

Page

2.5.3 Best First Search 2-16

2.6 Summary of Search Algorithms 2-21

II. Methodology and Design 3-1

3.1 Introduction. .. ý.... 3-1

3.2 Methodology 3-1

3.3 Metrics. 3-2

3.3.1 Speedup. 3-2

3.3.2 Nodes Expanded 3-3

3.4 Understanding the Problem 3-9

3.4.1 Traveling Salesman Problem 3-9

3.4.2 A*. 3-10

3.5 Heuristic Estimate of h(n) 3-11

3.5.1 Assignment Problemn Example. 3-13

3.5.2 Assignment Problem Algorithm 3-13

3.6 Ifigh Level Design. 3-21

3.6.1 Sequential TSP Algorithm 3-21

3.6.2 Decomposition Techniques 3-25

3.6.3 Hligh Level Algorithms 3-26

3.7 Summary 3-28

IV. Low Level Design and nimplemnentatiorm.. 4-1

.1. 1 Introducit ion. 4-1

1.2 D~ata Structures 4-1

4.3 Low Level Design. 1-7

4.3. 1 Rlandom City Generator. 4-7

4.3.2 Control Program.- 7

4.3.3 W'orker Program. 4-9

iII

Page

4.3.4 Host Program. 4-10

4.3.5 Subroutines. 4-11

4.4 Distributed List. 4-15

4.4.1 DL Without Load Balancing 4-15

4.4.2 DL With Load Balancing. 4-16

4.5 A~* Variations 4-21

4.5.1 IDA* 4-22

4.5.2 TSP with Levels 4-23

4.5.3 Distributed List with Load Balancing and NODE Distribution 4-24

4.6 Summary 4-31

V. Results 5-1

5.0.1 Introduction. 5-1

5.1 Mletrics. 5-1

5.2 Testing. 5-3

5.3 Trest Results. 5-6

5.4 Summary. 5-8

VI1. Conclusions andl Recommi endat ions for Further Work.

6.1 Introduction. 6-1

6.2 Interpretation of the Results. 6-2

6. 2.1 Preliminary Depth First Search (DFS). 6-3

6. 2.2 Evaluation of the Algorithms. 6-3

6.2.3 Small Scale Parallel Computers. 6-4

6.2.4 Large Scale Parallel Compiters. 6-8

6.2.5 Comparison of DL-.IB and 1DL.DIST Algorithms. 6-10

6.3 I1)A* Versus Centralized List. 6-16

6A1 *iidelines for D)istributed Memno-v Computer Implemient~ation of A *

Algorithms. 6-17

Page

6.5 Recommendation for Furtlt•r Research 6-20

6.6 Summary 6-21

Appendix A. Structure Charts A-1

A I Introduction A-1

A.2 Centralized List Algorithm A-1

A.3 Distributed List Algorithms A-3

A.3.1 Distributed List with Load Balancing A-3

A.3.2 Distributed List with Load Balancing and Distribution. . . . A-4

Appendix B. Test Results and Data B-1

B.1 Introduction B-1

B.2 Data B-1

B.2.1 Execution Time Graphs B-7

B.2.2 States Expanded Graph B-10

B.2.3 Share Data 1B-12

B.2.4 Distribution Data 1B-18

B.3 IDA* Data B-24

Appendix C. Problem Definition and Data C-1

C.I Introduction C-1

C.2 Problem n22a C-1

(C.3 Problem n55a C-2

(7'..4 Problem n65a C-6

(7.5 Problem nl00a C-12

.....

List of Figures

Figure Page

2.1. Space Time Relationships 2-2

2.2. Hypercube Dimensions 2-7

2.3. Depth First Search 2-13

2.4. Breadth First Search 2-17

2.5. Hierarchical Diagram of Best First Algorithms 2-17

2.6. Iterative Deepening A* 2-20

3.1. Total Search Space 3-4

3.2. Search Space For Depth First Search 3-5

3.3. Search Space For Breadth First Search 3-7

3.4. Search Space For Best First Search 3-8

3.5. Assignment Problem Cost Matrix 3-14

3.6. Assignment, Problem Part 1 3-17

3.7. Assignment Problem Part 2 3-18

3.8. Assignment Problem Part 3 3-19

3.9. Assignment Problem Part 4 3-20

3.10. Example Search Graph for 5 Cities 3-24

.1.1. Structure of Type NODE 4-1

4.2. Structure of the OPEN Queue 4-3

4.3. Inserting into the OPEN Queue 4-4

41.4. Deleting from the OPEN Queue 4-5

4.5. Cost Matrix Example .. 4-6

4.6. Initial OPEN Lists 4-25

4.7. After Node 0 Distributed 4-26

,1.8. After Node I D)istributed.. ,1-27

vi

Figure Page

4.9. After Node 2 Distributed 4-28

5.1. TSP for 4 Cities using File n4a 5-4

5.2. Search Graph for 4 Cities using File n4a 5-5

A.1. Centralized List tlost Structure Chart A-1

A.2. Control Structure Chart A-2

A.3. Centralized List Worker Structure Chart A-2

A.4. Distributed List tlost Structure Chart A-3

A.5. Distributed List Worker Structure Chart A-3

A.6. Distributed List Host Structure Chart A-4

A.7. Distributed List Worker Structure Chart A-4

B.1. Execution Time Data for 22 Cities B-7

B.2, Execution Time Data for 55 Cities B-8

B.3, Execution Time Data for 65 Cities B-8

B1.4 Execution Time Data for 100 Cities B-9

B.5. States Expanded Data for 22 Cities B-10

11.6. States Expanded Data for 55 Cities B-10

B.7. States Expanded Data for 65 Cities B-11

B.8. States Expanded Data for 100 Cities B-Il

B.9. Execution Timefor 22 Cities B-12

B.10.Execution Time for 55 Cities B-12

13.11. Execution Time for 65 and 100 Cities 13-15

B.12.States Expanded for 22 Cities 13-15

B. 1.States Expanded for 55 Cities B-16

B. 14.States Expanded for 65 Cities 13-16

B -,15.States Expanded for 100 Cities B-17

1B.16. Execution Time for 22 C'ities 13-18

VII

Figure Page

B.17. Execution Time for 55 Cities B-18

B.18.Execution Time for 65 Cities B-21

B.19.Execution Time for 100 Cities B-21

B.20.States Expanded for 22 Cities B-22

B.21.States Expanded for 55 Cities B-22

B.22.States Expanded for 65 Cities B-23

B.23.States Expanded for 100 Cities B-23

B.24.IDA* Execution Time Data B-24

B.25.IDA* States Expanded Data B-27

B,26.Level Execution Time Data B-27

B.27.Level States Expanded Data B-28

viii

List of Tables

Table Page

2.1. Memory and Time Comparisons of Search Algorithms 2-22

2.2. Applications and Implementations of Search Algorithms 2-22

6.1. States expanded by processor using CL and 100 cities 6-19

B.I. Centralized List Data B-2

B.2. Distributed List with no Load Balancing Data B-3

B.3. Distributed List with Load Balancing Data B-4

B.4. Distributed List with Load Balancing and Distribution I of 2 B-5

B.5. Distributed List with Load Balancing and Distribution 2 of 2 B-6

B.6. Share Data 1 of 2 B-13

13.7. Share Data 2 of2 BB-14

B.8. Distribution Data 1 of 2 B--19

13.9. Distribution Data 2 of 2 B-20

13.10.IDA* Data B-25

13.1 I.Centralized List using Levels Data B-26

ix

AFIT/GE/ENG/92-M

Abstract

The purpose of this research is to explore methods used to parallelize NP-complete problems

and the degree of improvement that can be realized using different methods of load balancing.

A serial and four parallel A* branch and bound algorithms were implemented and executed

on an Intel iPSC/2 hypercube computer. One parallel algorithm used a global, or centralized, list

to store unfinished work and the other three parallel algorithms used a distributed list to store

unfinished work locally oin each processor.

The three distributed list algorithms are: without load balancing, with load balancing, and

with load balancing and work distribution. The difference between load balancing and work distri-

bution is load balancing only occurs when a processor beconwz idle and work distribution attempts

to emulate the global list of unfinished work by sharing work throughout the algorithm, not just

at. the end. Factors which effect when and how often to load balance are also investigated.

Which algorithnu performed best depended on how many processors were usd to solve the

problem. For a small number of processors, 16 or less, the centralized list, algorithm easily outper-

formed all others. Hlowever, after 16 processors, the overhead of all processors trying to cominu-

nicate and request work from the same centralized list began to outweigh any benefits of having a

global list. Now the distributed list algorithms began to perform best. When using 32 processors,

lhe dist ributed list, with load balancing and work distribution out performed the other algorithms.

X

IMPLEMENTATION AND ANALYSIS OF NP-COMPLETE ALGORITHMS ON

A DISTRIBUTED MEMORX COMPUTER

I. Introduction

1.1 General Problem Statement

The Department of Defense tod-.y is tasked with performing the same mission as ten years ago,

but with fewer personnel ,'id less equipment. Sophisticated technology controlled by computers

allows the IUnited States to continue its military leadership of the world. To continue this leadership,

algorithms must become more efficient as the tasks required of them become more complex.

One of the most, widely used problem solving techniques is exhaustive search, which searches

all possible answers and selects the best solution. But what happens if the answer to the overall

problem depends on the answer to many sub-problems within the main problem? Every possible

combination of answers must be investigated to find the best. or optimal solution. ()mnbinatorial

searches for small problems are possible, but the number of possible solutions which must be checked

can expand exponentially beyond our limits in tim and memory space to search them. Many real

world problems in artificial intelligence, operations research, VLS clhip layout and wire routing,

and weapon to target assign ment problems can use this exhaustive search technique.

ornbinatorial searches whose execcution times increase exponentially with a linear addition

of information t.o the problem are in thel(' class of ,ion-determninistic polynomial (NP) complete prob-

evms. Exanmples of Nl'-complk, prol,-ins include the knapsack problem, the traveling salesman

problem, the set covering problem. lite assigimnent. problehm, and many others. This research investi-

gates elementary lieurist ics u.;,d to solve N t'-complecte problems on distributed memory compiters.

hI1

the search space, the example of 2 weapons and 10 targets requires 1024 bytes. However, when

their are 50 targets, the memory requirements grow to 1,130,000,000,000,000 bytes or 1,130 giga

Imtes. [Carpenter, 1986: 35] This amount of memory is available on few computers. Obviously,

more efficient methods must be found for solving these problems. However, as is shown in Chapter

I1, NP-complete problems can require polynomial space if properly designed.

One method to shorten the time to find a solution is to accept a less than optimal solution.

Pearl provides heuristics, or guidelines, using an error function as a bound on the solution. This

allows any solution within a predetermined range to be accepted as a solution . Probabilistic meth-

ods such as Monte Carlo algorithms control the search based on probabilities of finding a solution

down a certain path. This method can also return a less than optimal solution [Pearl,1984: 86-89].

Another non-optimnal search method is the genetic algorithm. This algorithm solves problems by

manipulating strings of instructions the same way chromosomes manipulate DNA. The process

involves a complex search that combines blind groping with precise accounting [Antonoff, 1991:70]

Since tiis research only considers optimal solutions, none of these techniques are investigated.

AnXother method to shorten the time to find a solution is to increase the computing power of

the computer. In the past, programmers used fast2r computers to solve NP-complete problems as

the problems increased in complexity. As Hennessy and Joupppi poirt out, the two most important

factors in the high growth rate in computing power is the dramatic increase in the number of

transistors available on chip and architectural advances including the use of RISC ideas, pipelining,

and caches. With all these improvements, central processor unit (CPU) performance has increased

95,000•X, since 1980. [Hennessy and .Jouppi, 1991: 19-2:1].

However, traditional sequential computers are approaching the theoretical limit of tihe time

required to perform a computation. The liniiting factor on computational speed is propagation

delay of signals between transistors on the same chip. This propagation delay consists of a gate

delay caused by thel transistor itself and signal travel t inie betweeni transistors. (Gate delay has been

1-2

reduced to the point where signal travel time between transistors is the dominant delay. This travel

delay is being reduced by making the transistors smaller and placing the transistors closer together

on the chip. While the number of transistors on a chip can be quite high, there is obviously a limit

to the size and space required for each transistor. Since the speed of light limits the time required

for a signal to travel between transistors, other methods to improve computation power are being

sought [DeCegaina, 1989: 23-27].

The design time for main frame and minicomputers is approximately four to five years while

that of a microcomputer is approximately two years. According to Hennessy and Jouppi, this

shorter design time allows the computers based on microprocessor technology to take full advantage

of the rapid changes in VLSI technology and changes in computer architecture. They show that

the computing power and speed of microcomputers is on par with mainframes and is quickly

approaching that of uniprocessor supercomputers. [Hennessy and Jouppi, 1991:19]. Bell contends

computers built using microprocessors connected together to form a multiprocessor computer is the

trend of the future in computing [Bell, 1989: 1093-10971.

To obtain more computations in the same amount of time, multiprocessor computers are now

used. Each task is divided into sub-tasks and assigned to one of many processors in the computer.

By using multiprocessors, a solution to the task may be found in less time than required for the

sequential computer.

1.3 Scope

T'iis research investigates the use of multiprocessor computers to solve NlP-complete problems.

TO (Io this, search algorithms are designed and implemented on an Intel iPSC(/2 hypercube. Various

search strategies such as depth first search, breadth first search, backtracking, best first search,

and branch an(d bound are incorporated into different algorithms to determine their effect on the

alIgorif h 's efficiency. Since this research is concerned only with optimal solutions. non-optima I

-I-.

algorithms such as probabilistic or genetic algorithms are not considered. User applications to test

the search algorithm are also designed and implemented on the hypercube.

The goal of this research is to address the following:

1. Study and analyze previous works

2. Investigate the effects of different static and dynamic load balancing techniques.

3. Investigate when and how to communicate global information.

4. Investigate the effects of keeping the list of work to be done in a centralized list on one master

processor or on distributed lists on many processors.

5. Determine the type of algorithm, or combination of algorithms, which best suit a particular

problem.

6. Develop appropriate performance metrics to evaluate each algorithm.

7. Investigate the amount of communication vs computation in each algorithm.

8. Investigate the underlying heuristics common to all NP-complete problems.

While this list is far from complete, the time constraint placed upon this research limits the

topics which can be investigated.

Many different metrics are used to evaluate the time efficiency of a parallel search algorithm.

T'li:s thesis investigation bases performance of an algorithm primarily on speeduhp and number of

states generated by the algorithm. Other metrics considered include processor idle time, efficiency,

and the ratio of communication versus computation time. Metrics to measure the space efficiency

are not considered due to the limited time for this research.

A comiprelhensive literature search covering the topics of search algorit hms, parallel processing,

pierforrinance analysis, and hypercube computers provides the foundation for this research andi is

1-5

discussed in chapter 2. Analyzing search algorithms developed at AFIT or stored at software

repositories around the country provides additional understanding of the problem.

Since parallel algorithms are especially difficult to design and implement, this research follows

standard software engineering practices for documenting, testing, and designing programs.

Since the sequential algorithm is the standard against which the parallel algorithms are ini-

tially measured, the first task in the research effort is designing and implementing a sequential A*

algorithm. After determining critical parameters of the program, they are measured which pro-

vides a baseline for comparison to later versions of the program. After implementing the sequential

algorithm on the parallel computer, baseline measurements of critical parameters are again taken.

Changes to the parallel program are made and the parameters again measured. After each change

to the program, data was collected and analyzed to determine the effect of the changes and to help

determine what change to inake next. All data was analyzed looking for fundamental heuristics to

solving NP complete problems on parallel computers.

1.4 Summary of the Thesis

In this chapter, a working definition of NP-complete problems is provided and a quick example

to justify the need to study and improve the methods for solving them on a distributed memory

computer. The scope of the research is then presented.

The rest. of the thesis is composed of five additional chapters. Chapter 11 is the literature

search to determirle the current state of the art. Chapter III provides the high level design of

the algorithms and the measurement criteria. The low level design is provided in Chapter IV.

Chapter V discusses the results received from the different, algorithms and Chapter VI presents my

coilclusions and recomrnein dat ions for future work.

This thesis assumes a general understanding of sequential and parallel computers along with

some understanding of the search techniques. A quick explanation of concepts and ideas is provided

in the following chapters and references are given for further study.

1-7

I1. Background and Rcquirc'ments

2.1 lntroductton

To perform this research an understanding of N P-colnplete l)mb[ems, search teclmiques, and

parallel architectures is essential. Each of these topics is discussed in its own mare section. Also,

a section discussing current topics in parallel search techniques is provided. Each of these subjects

has been extensively studied in books and journals, so only an overview of the subjects is provided

here. References are listed to provide a more in-depth st udy of each topic if desired.

2.2 .VP-('omplcle

Brassard arid Brant[ey define NP-complete problems in terms of two conditions. The first

condition is that the problem be a member of NP space. A problem is in NP space if it can be

solved on a non-deterministic Turing machine (NI)TM) in polynomial time. Since a NDTM is a

co|nputing model which can solve an infinite number of problems in parallel, it can solve both

polynomial and nonpolynomial time problems in polynomial time.

The second condition required for a problem to be NP-complete is that NP-complete problems

must be transformable to every other NP-complete [)roblem in polynomial time [Brassard and

Brant[ey, 1985: 323-325]. Therefore, if a polynomial time solution is found to any of the NP-

col||plete protAems, all can be solw•d in polynomial time. One goal of this research is to investigate

the heuristics which are common to parallel N P-comlAete problelns.

Aho and others provide relationships belwee|, differem classes of problems as shown in Figure

2.1. They also prove that P-space is identically equal to NP-space. Therefore, if a problem is in

NP-time, it is in P-space [Aho and others, 1974: 395]. 'Fhis figure also shows the possibility that

olher problems in NP-time are also NP-complete.

NPP-time

Figure 2. 1. Space Time Relationships

2-2

Aho lists the following as NP-complete problems:

1. Satisfiability -- Is a Boolean expression satisfiable?

2. Clique -Does an undirected grapli have a clique of size k?

3. Hamilton Circuit - Does an undirected graph have a Hamilton circuit?

4. Colorability - Is an undirected graph k-colorable?

5. Feedback Vertex Set -- Does a directed graph have a feed back vertex set with k members?

6. Feedback Edge Set -- Does a directed graph have a feedback edge set with k members?

7.)irected tlamilton Circuit - Does a directed graph have a directed Hamilton circuit?

8. Set Cover Given a family of sets SI,52, S,, does there exist a subfamily of k sets

.,Sk such that
k
U U - si
j=1 j=l

9. Exact (Cover i(;ven a family of sets S1 , S,,, S, does there exist a set cover consisting of

a subfamily of pairwise disjoint sets?

[Aho and others, 197,1: 3791. See Alho or (Christifides for a more detailed explanation of the above

listed problems [Christifides, 1974: 1-75].

The working definition use(d in this research is the class of problems for which the time

complexity has an exponential functionu as a lower bound. The Traveling Salesman Problem (TSP),

flip qt C",v#,ring) Prodhlem (S(hP). the assignment. problem, and the Knapsack Problem are all a

subset of one of the above mentioned NP-complete problems and are themselves NP-complete. As

shown in Figure 2.1. the tinm complexity of these problems is O(c") and the space complexity is

O(n). (Janso,, andl Sijsternians. 198.9, 271] [Brassard and Bratley, 1988: 324, 336-337].

2-3

2.3 Parallel Architectures

The most common computer iii use today is a serial machine which physically performs one

task at a time. Each task must be performed in a definite order with one task following the other

in sequence. In contrast, a parallel computer can perform any number of different tasks at the

same time limited only by the number of processors available to perform the tasks. One useful

comparison of differences in the implementations of an algorithm on serial and parallel machines is

speedup. According to Miller and Penke, speedup is defined as the ratio of the time the algorithm

takes to run on a serial compute- versus the time the algorithm takes to run on a parallel computer.

"The formula for speedup is

S is'.eriat1/I'p el

Another comparison between serial and parallel computers is in the area of efficiency. Effi-

ciency is defined as speedup per processor in the parallel system [Miller and Penke, 1989: 133].

Thus,

E =SP

where P is the number of processors in the parallel system. Ideally, the speedup is a linear

function and the efficiency is constant. For reasons discussed later, this is very seldom the case.

2. Y.0. 1 Types of Parallil Coompulers One of the main differences among the categories

of parallel computers in use today is how their nmemories are organized. As described by DeCegania.

shared memory computers have one large block of memory which all the processors can access.

Comimunication between processors is accomplished by one processor placing information in a

niemory location and other processors reading that location. The other system of memory storage

is a (listributed memory computer. In this architecture, every processor has its own memory

which only it can access. ('omununicatilon between processors is accomplished by passing niessages

2-1

between the processors [DeCegama 1989: 18-23 and 62-64]. This research concentrates only on the

distributed memory computer.

Another main difference among parallel computers is the communications network used to

pass information. One method is to connect all the processors and memory to a bus. This allows

a few lines to completely connect all processors and memory. The main disadvantage of a bus

architecture is of the limited bandwidth of the bus. According to DeCegama,

"... if the number of processors is large (from 50 to 100 processors with present technol-
ogy), the delays due to bus contentions for interprocessor communications and global
memory accesses are increasingly unacceptable, and perforniance degrades rapidly"

[l)eCe•gana, 1989: 192].

The other communications network is a sivitching network of interconnecting lines. Proces-

sors andl memory cells are directly connected only to a fraction of the total number of processors

available. l)eCegama provides an explanation for many types of switching networks including the

crossbar network, the wraparound mesh network, the shuffle-exchange network, the SW-Banyon,

and the generalized cube [DeCegama, 1989: 199-253]. Messages between processors not directly

connected must be routed, or switched, by intermediate processors or switching units similar to

those used in telephone switching circuits.

DeCegama also categorized parallel computers by the way instructions and data are processed.

Only the two most common categories, single instruction multiple data (SIM D) and multiple input

multiple data (MIMD) are discussed here [DeCegama, 1985: 63-65].

9 A SIMI) computer has multiple processors with each processor performing the same instruc-

tion on different data at the same time. All instructions are executed synchronously on all

processors.

2-5

* A MIMD computer has multiple processors, each capable of asynchronously executing dif-

ferent instructions on different data sets. The processors can work independently or as a

group.

2.3.1 Hypercube Architecture The hypercube is a distributed memory MIMD computer.

Each processor has its own local memory and information is disseminated by passing messages

between processors. Each processor can work independently on its own data, or work as a group

on shared data.

Hayes and Mudge describe a hypercube architecture as a generalization of the 3 dimensional

cube graph to an arbitrary number of dimensions. Just as a 3 dimensional physical cube has 2'

vertices, so an n dimensional hypercube has N = 2" nodes. Each vertex has n nearest neighbors.

Figure 2.2 shows four examples of the connections of a hypercube for different values of n. This

topology guarantees that any 2 vertices are no more than n links apart.. Therefore, the time to

communicate between any 2 vertices is log2 N in the worst case [Hlayes and Mudge, 1989: 1829-1830].

2.3.2 Granularity Grain size, or granularity, is used in parallel computers to describe the

relative size or frequency of an event as compared to other events of the same type. DeCegama

categorizes granularity into 2 broad areas: system and application granularity. System granularity is

used to describe attributes of the hardware and physical configuration while application granularity

describes the characteristics of the particular problem being solved [l)ecegama ,1989: 8-9]. Both of

these granularities influence the effectiveness of a parallel program.

2.3.2.1 System Granularity System granularity is classified into three grain sizes:

coarse grain, medium grain, and fine grain. Generally, a coarse grained multi-processor com-

puter has a small number of large, complex processors while a fine grain multi-processor computer

has a large number of small, relatively simple processors. As the name implies, a medium grain

2-6

Q0 n
n=O n=l

n=2 n=3

Figure 2.2. Hypercube Dimensions

2-7

computer is in between coarse and fine grain in both the number of processors and the complexity

of the processors used. Most of the commercial parallel computers in use today are medium grain

[Decegama ,1989: 8-9]. The definition of what is fine or course grain is subjective and constantly

changes as the technology changes.

2.3.2.2 Application Granularity DeCegama divides application granularity into event

and task granularity. A task is defined as a program segment which must be executed sequentially.

Task granularity is the average amount of computation performed by each task of the program.

Event, granularity is a measure of the average amount of computation performed by the processors

between events of a certain type. For example, communication granularity is the amount of compu-

tation between message events. Other common event granularities are synchronization, heuristic,

and voting [Decegama ,1989: 8-9].

Like system granularity, event granularity is also measured by relative comparisons between

the number of events. Coarse grzin events have relatively large amounts of computations between

events and fine grain events occur relative frequently.

2.3.2.3 Granularity Tradeoffs There are overhead costs associated with event granu-

larities. Processing the event, calls to operating system or other functions, communication between

processors, and resource contention are all overhead which reduce the amount of time spent solving

the problem. Increasing the event granularity decreases these costs. However, many algorithms

require fine grain events to operate efficiently. For example, information calculated by one processor

might be required by all processors. Delaying the communication of the data could result in longer

execution times for the algorithm.

Increasing task granularity decreases the number of tasks in a computation. This decreases

the overhead associated with task creation and termination, but might introduce other costs. A

small number of large tasks might make it harder to balance the work load between the processors

2-8

because the tasks can not be divided into smaller work. This could result in idle processors and a

longer execution time for an algorithm.

Whenever designing a parallel algorithm, both system and application granularity must be

considered. Tradeoffs between event grain and the associated overhead costs must be carefully

weighed to obtain the optimal performance of the algorithm.

"2.4 Parallel Search Issues

Architectures discussed previously are applicable to solving both serial and parallel search

algorithms. Hoxvever, there are issues that pertain only to parallet computers. Communication of

global variables to all processors and distributing the work load evenly among the processors are

the main concerns addressed.

24.1 Global Variable Communication Since this research covers distributed memory com-

puters only, each processor has access only to the information stored at the local location. If a global

variable changes, this new value must be coznmunicated to all the processors. Processor time spent

cormnmunicating subtracts from the time spent solving the problem. Jansen and Sijstermans recom-

inend partitioning the processors into groups that have only one master processor communicating

outside tihe group. This reduces the number of unnecessary cotnmnunication,- between processors

because the master validates the new global data before transmittin g it, inside the group or to other

groups. [Jansen and Sijstermans, 1989: 275]. Another method is to transmit new global variables

to all processors at the same time. Still another metnhod is to wait until certain control points in

the algorithm nfore transi ,tting global information. This last method reduces communication,

but at the cost of possibly expanding unnecessary states in the search graph associated with the

N P-comnplete problem.

2-9

2.4.2 Task Allocation Methods There are two ways to allocate new tasks to the processors:

static and dynamic. Static allocation is done a priori. Dynamic allocation assigns processors to

a problem as new children or sub-problems are generated. NP-complete problem solutions are

probabilistic in that the order in which branches of the search graph are explored can not be

determined. Also, the amount of work in each branch or sub-branch of the search graph can not

be determined. Therefore, sub-branches generated by states, or sub-problems, are generated in an

unpredictable fashion. Static allocation of only certain branches of the sea'rch graph to particular

groups of processors would lead to processors which finish early being idle until the last processor

finishes. I)ynamic allocation allows new sub-problems to be assigned to processors with few or no

problems waiting to be run. This allows all the processors to be active approximately the same

length of time.

2.4.2.1 Centralized Versus Distributed List Dynamic allocation has two methods for

allocating tasks. The first, centralized list (CL), keeps the listing of all the sub-problems generated

in one processor called the master. The processing of the sub-problem is done in all the other

processors called slaves. The advantage of the CL is the global "best" sub-problem is always

assigned to the next available processor. A disadvantage of the CL is when a slave finishes or

generates a sub-problem, it must contact the master to insert the sub-problem or to receive its next

problem to work. This requires two communications for each initiation of a sub-problem. According

to Quinn, adding additional processors to the system causes a linear increase in the communication

overhead of the parallel algorithm. Also, tl,, master is involved in all of these communications and

it ca'I become a b)ottleneck for the system. When messages begin to back up at the master, slaves

become idle waiting for a response. Eventually, the communication overhead to the master becomes

the dorninarlt computational factor and adding more processors to the problem can actually increase

the execultion time of the algorithm [Quinn, 1990: :385]. '[he advantage of always assigning the

l,,st sub-problem to a processor is greatly outweighed by tle cost of conmmnication and waiting!

2-10

The other approach to dynamic allocation of sub-problems is the distributed list (DL). In

this approach, each processor maintains a list of sub-problems waiting to be worked. Therefore,

when the processor completes or generates a task, all communication is within the processor and no

message is passed to another processor. This eliminates the bottleneck of having to communicate

twice with the master processor when a task is completed.

One problem with the DL method is not search all problems generate the same amount of

sub-problems. Therefore, to keep processors from being idle while sub-problems are still waiting

to be run on other processors, a method of load balancing must be implemented. Several different

load balancing algorithms and their performance are discussed by Quinn [Quinn, 1990: 385]. The

choice of which sub-problem to keep and which one to send to another processor and when to

balance the loads greatly affected the efficiency of the search algorithm. While load balancing adds

to the communication overhead, the benefit of reduced processor idle time greatly outweighs the

extra cost. in lost computiation time due to communication [Ma and others, 1988: 1507-1510].

2..;..'? Limits on Speedup and Efficiency Many other factors can limit the speedup and ef-

ficiency of a parallel algorithm. Since almost all programs have statements or routines which

don't. depend on values from other parts of the program, recognizing and efficiently exploiting this

parallelism is essential to produce the maximum .Deedup possible [Hayes and Mudge, 1989:1834].

Another area that reduces efficiency is having tI . rrocessors idle until enough tasks are generated.

Changing the method of generating the tasks depending on where the algorithm is in the search

can minimize this problem. A final problem is that parts of the algorithm cannot be parallelized.

Starting, terminating, and certain other procedures in an algorithmn are inherently sequential and

('annot be done in parallel. All these items decrease the speedup of an algorithm.

2-11

2.5 General Search Techniques

A search problem can be represented by a search graph with the root of the graph representing

the complete problem to be solved. Each child node represents a subproblem of the parent node

and represents inclusion of one or more constraints to the problem [Quinn, 1990: 384] [Hayes and

Mudge, 1989: 1838]. To find an optimal solution, every node, or state, of the graph must be

explicitly or implicitly checked to see if it is a solution. As described in Chapter I, the state space

can be extremely large making it impossible to explicitly check every node. The main difference

between the search techniques described below is the order in which the nodes are selected to be

investigated or explored. The rest of this section describes various search techniques: the greedy

method, uninformed search, backtracking, branch and bound, and best first search. While this is

not, a definitive list of search techniques, most other techniques which provide an optimal solution

are some combination of the techniques described.

2.5..1 Greedy Method In some greedy algorithms, enough information is known about the

problerm to always ensure the search is on the path to the optimal solution. Since at each stage of

the search the "best" node is selected, only the minimum number of nodes are expanded. Other

greedy algorithms, such as hill climbing, expand the best node at each level but retain no state

information on parent or sibling nodes. This can result in an algorithm returning a local, not

absolute, minimum as a solution. [Pearl, 1988: 35]. Examples of greedy algorithms include the

minimum spanning tree algorithm and Dijkstra's algorithm to solve the shortest path problem

[Brassard and Brantley, 1988: 80-87]. These problems are not NP-complete since the algorithms

can solve them in polynomial time.

2.5.2 Uninformed Search Another name for uninformed search is the "brute force" method.

This t.echnique expands every node without considering if it is on a solution path or not. If a

solution is foundl the algorithmim stops. There are two main variations in uninformed search; depth

first search (I)1"S), and breadth first search (I3FS).

2-12

2.5.2.1 Depth First Search (DFS) Depth first search works by always generating a

child node from the most recently expanded node. This continues until a solution is found or the

next state to be generated is not feasible. Thus, priority is given to expanding nodes at deeper

levels of the search graph. See Figure 2.3 for the following example. The search starts at the root

node, R, and continues down the path from node 1 to node 2 ending at node 4. At each level only

one node is expanded before going on to the next level. If the solution is not on the path expanded,

no solution is found [Pearl, 1985: 36].

LEVEL

0 R

I 11

228

Figure 2.3. Depth First Search

A variation of I4'S proposed by Korf is depth first iterative deepening (l)F1D). This algorithm

begins at the root nod,, level 0, and performs a I)FS to level one, expanding all nodes to this level.

2-13

If a goal node was not found, discard all nodes generated and start over at level 0 and perform a

DFS to level two. Continue discarding nodes and performing depth first searches until a solution is

found. One disadvantage of this algorithm is that it performs wasted computations by discarding

and generating the same nodes repeatedly. Korf claims that for large problems, the number of

nodes expanded asymptotically approaches the number of nodes for regular DFS. lie states that

since almost all work is performed at the deepest level of the graph, most nodes are only expanded

a few times. However, Korf assumes the cost of generating a node is cheap while the cost of storage

is high. This is not always the case. One advantage of DFID is since every node at each level is

expanded, it finds the shortest path solution. The other advantage is that only small amounts of

memory are required since only the path to each node and the cost, to reach the node is stored

[Korf, 1985: 98-106].

2.5.2.2 Breadlh F irst Search (BIF.,) In contrast to DFS, BFS assigns a higher priority

to expanding nodes at a higher level in the search graph. The list of nodes to be expanded can be

stored in a first-in-first-out (FIFO) queue. See Figure 2.4 for the following example. The search

starts at node R at level 0. At level 1, nodes 1, 2, and 3 are expanded before going on to level 2.

Since it expands every node at each level before continuing down to another level of the graph, the

first solution path found by BFS is the one with the shortest path [Pearl, 1985: 42]

2.5.2.3 Backtracking In the D)"S once the deepest node on the path was reached, the

search ended even if no solution was found. To continue searching for another, possibly better,

solution the algorithm must "backtrack" back tip the path to a higher level. At each higher level,

the node is checked for any unexpanded child nodes. If a child node is found, a new I)FS is started

down that, path. If no unexpanded child node was found, the algorithm backtracks to the next

higher lewvl. This continues until all paths have Ibeen searched. In this case, the list, of nodes to

be expanded can be stored in a last-in-first-out. (LIFO) queue. In Figure 2.3, if node 4 was not

the solution , the algoritlhin backtracks to node 3 and checks to see if it. has any unexpanded clild

2-11

nodes. In this example, node 5 would be expanded next followed by the nodes in increasing order.

Nodes at a deeper level of the search graph are still given a higher priority for expansion than nodes

at a higher level [Pearl 1985: 36-411.

"2.5.2.4 Branch and Bound To keep from having to explicitly explore every path of

the ',:irch graph, additional information must be stored. For example, if a maximum cost is known

after the first branch of the tree is explored, this cost can be stored and used to limit the search

down any other branch. If a lower maximum cost is found in another branch, this new value is

stored as the new maximum cost. Also, if additional information is known about the particular

problem being solved, a heuristic function can be used to calculat.e the cost of continuing to search

down a particular branch of the tree. An example of this function is the cost of reaching a node

phis a conservative estmimate of the cost to the solution. If this value is greater than the known

Maximum cost, or lower bound, then the search would not. continue down this branch. Instead the

algorithim would jump, or branch, to the next node at the head of the stack or queue waiting to be

explored. In this way, all of the nodes of the tree do not have to be explicitly explored.

Bosworth and others characterize a branch and hound algorithm into the following four main

parts:

1. Expansion procedure A method to create a node's children

2. Sel,'ction procedure A heuristic such as I)FS or BFS to decide the order in which the nodes

are expanded

3. Bounding rule Does the cost to reach a partictular node plus the estimated cost, to com-

pletion for that node equal or exceed the global best cost.

i. Termination rule -- Determination of whethber the node represents a solution. When searching

for an optinial solution, termination is delaved until all nodes have been evaluated either

explicitly or implicitly.

2-15

[Pennington and others, 1988: 241]

Using a combination of backtracking, branch and bound, and DFS an optimal solution to

the search graph can be found quicker than using just DFS. An advantage to this method is it

requires less memory storage than other search techniques since only the paths with solutions are

stored. A disadvantage of this method is the algorithm can take longer than BFS. For example, in

Figure 2.3 the search works from top to bottom then left to right. If the solution was in the path

containing node 12, most of the nodes expanded were not on the solution path . However, if an

optimal solution is required, all branches of the graph would have to be searched, or bounded, to

validat,[that the b•..t solution was found [Korf, 1985: 99].

In conlra.,t, using branch and bound with BFS provides a solution quicker since it finds the

solution with the shortest path. The time complexity is also at least O(cf('•)). However, BFS

rqiiires mort,, ileiory storage because all nodes at each level are expanded before going to the

niext leve.l. Since this requires all paths of the search graph to be stored until a solution is found,

the memory re,,qirements could be the entire search space. For NP-complete problems, this is at

least 0((cf"') where c is a constant, and f(n) is a function of the number of inputs into the problem.

W\hin searchinig for an optimal solution, BFS continues searching the graph until all branches have

I eI, exploredI. Only when the cost of continuing down a path exceeds the current maximum value

is a ;path r•iniove, from meniory. Korf points out that many times the memory required to be

sl rel vxceeds tle mmiemory of tle computer. When this occurs, the probhlem is not solvable with

tlh,., f,.,'hi~lqu,' [K,,rf'. 198•5: 100-102].

25 .? U st First Scarch Like the DFS with branch and bound, best, first search uses an

hieuristic I(o calculate the estimnated cost to find a solution down a certain path. Umnlike DFS which

exp;dls Ili,, lest node from the most recently expanded node, best, first search expands Ihe best,

ilde in tfi eit ire' graph. I shng the heuristic information, best first search focuses the search down

tl, pafli which provides thie behst, chance of producing a solution.

2-I16

LEVEL

0

1 123

Figure 2.A. Breadth First Search

additive evaluation
f(n) = g(n) + h(n)

Figure, 2.5. Hierarchical Diagram of Best First Algorithms

2-17

2.5.3.1 Hierarchy of Algorithms Pearl describes a hierarchy of best first algorithms

based on when the algorithm is terminated and how the cost of a node is calculated. This hierarchy

is shown in Figure 2.5. In Figure 2.5, d.t. stands for delayed termination, * signifies an optimal

solution is found if one exists, and r.w.c. stands for recursive weight function. Pearl defines a

recursive weight, or cost, function as follows:

A weight function WG(rt) is recursive if for every node n in the graph

WG.(n) = F[E(n) : WC(nj)rnWV. (n2) ... , IV(;(,b)]

where 1,1),7b are the immediate successors of n. E(n) stands for a set ,of local
properties characterizing the node it. F is an arbitrary combination function, in ,notO,,ic
in its WVV(,) arguments.

Basically, if the weight of a node is recursive, the weight is a function of the weights of the

nodes in its path.

An optimal solution can be found using best first search by combining it into an algorithmn

with branch and bound and delaying termination of the algorith uni il I all branches of lie, graph

have been evaluated.

2.5.3.2 A* One algorithm used to calculate the estimated cost to a ohlution is an

additive function of the form

f(n) = g(n) + h(n)

where -(n) is the cost, of the path from the root node to node n

and h(n) is the estimated cost. from node n to the solution [Pearl, 1985: 75]. As Figure 2.5 shows

if this heuristic function is used with best, first algorithm and termination is delayed to search for

arn optimal solution, the algoritlhn is called additive optimal, or A*.

Pearl defines a heuristic as admissible if

h(n) < h * (n)

2-18

where h(n) is the estimated cost to completion and h*(n) is the actual cost to completion [Pearl,

1985: 77]. It an admissible heuristic is used in the A* algorithm, you are guaranteed to always find

an optimal solution if one exists [Korf, 1985: 103].

2.5.3.3 A* Variations Korfsuggests using a variation of the depth first iterative deep-

ening algorithm with the A* algorithm -ailed IDA*. At each iteration, perform a DFS, bounding

the path when the f(n) value exceeds a given threshold. The initial threshold is the estimated

completion cost of the root node. The threshold used for the next iteration is the minimum cost of

all values that exceed the current threshold. The algorithm ends when all nodes have been explored

or unexplored nodes exceed the cost of the threshold.[Korf, 1985: 103]. Another variation of IDA*

is to set the threshold by the number of levels expanded. For example, oni the first iteration expand

all nodes to level 3. Then on the second iteration, begin at level 0 and expind all nodes to level 6,

and then the third iteration would begin at level 0 and expand all nodes to level 9.

For example, Figiii, 2.6 shows the partial search space for a problem using cost as the thresh-

old to determine which nodes are expanded. The root node generates all of its children with

estimated cost less than or equal to the estimated cost of root node. On the first iteration, all

nodes at level 1 are generated and the mninimnum cost. is now 110. On the second iteration, level 1

is generated again, but only node 1 is expanded. Node 2 is also expanded since its estimated cost

is still equal to 110. The new threshold value is now 111 from node 6. Each successive iteration

generates level 1. but only expan(ls nodes with cost not exceeding the threshold value. The third

iteration expands nodes R.,1.2.6: generates nodes 3,5,7,8,10,11; and the new threshold is 112. The

fourth iteration expands nodes R,.1.2,3,5,6,7,8. and generates nodes 4,9,11,12, and 13. This contin-

ues until a solution node is found which becornes the new threshold and the process continues until

all branches have been investigated.

Korf claims most of the work by IDA* generating nodes is performed at the bottom of the

tree so the number of nodes generated asympt otically approaches the number of nodes gener:,t,,,I

2- 19

LEVEL

0 11

11

7 8(10
2/

Figure 2.6. Iterative Deepening A*

2-20

by A*. Since only the path from the root node to the solution node must be stored, he claims to

get A* speed with depth first search memory requirements [Korf, 1985; 106].

Cvetanovic and Nofsinger suggest another A* algorithm using what they term Continuous

Diffusion. This algorithm is used on distributed memory parallel computers using a distributed list

algorithm. This algorithm performs a parallel A* search, but after expanding a set number of nodes,

processors then exchange a certain number of nodes from their list to be expanded with their nearest

neighbors. This keeps processors from expanding nodes with higher costs while a neighbor has nodes

with much lower cost. The nodes with the lowest cost diffuse from processor to processor insuring

the best nodes are being expanded. The idea is to keep the local distributed list implementation

as close to a centralized list implementation as possible. Using this method, they claim to expand

a much smaller number of nodes than IDA*. See the section on Parallel Architecture for an

explanation of distributed memory and nearest neighbor [Cvetanovic and Nofsinger, 1990: 87].

2.6 Summnary of Search Algorithms

This section is a summary of the search algorithms presented. Table 2.6 is only a generalized

dlescription of the algorithms. Specific problems and implementations can greatly affect the memory

and time utilization of the algorithms. For example, all parallel versions of A* are greatly affected

by whether the list of work to be done is maintained on a centralized or distributed list.

Table 2.6 is a summary of some important papers about search algorithms and NP-complete

problems.

S UN NIM A IIY

Algorithms to solve N P-complete on serial computers are well known. However, N P-complete

algorithlis implemented on parallel computers have been studied only in the last decade, and many

fmimIdanmieital (Itiestions remain unanswered. New techniques for load balancing and communicating

2-21

Parallel Search Algorithmns

ALGORITHMI MEMORY TIME COMMENTS

Depth First Requires little memory, Varies greatly depending on Branch and bound and
Best feature where in search graph a backtracking can greatly

solution is located. Can require reduce time
prohibitive amount of time.

Breadth First Can require prohibitive Varies greatly Branch and bound and
amounts of memory depending on where in search backtracking can greatly

graph a solution is located. reduce time and
memiory required.

Best First Can require prohibitive Solutions are consistently Characteristics depend
amounts of memory. Uses quickest, but can be longer on the variatic'!
less than Breadth First than Depth First used

A* Same as Best first, Same as Best First
IDA* Memory the same as Claimed to be same Still undecided issues

Depth First as A* on relative speed,
especially in parallel version

Continuous Same as Best First Claimed to be better Parallel version only
Diffusion A* than IDA*, definitely Dispute about relative

better than A* merit compared to IDA*

"Fable 2.1. Memory and Time Comparisons of Search Algorithms

Paralletl Search Algorihmns

Year I Investigators _ __ _ Description

1976 Korf Theoretical investigation of Depth First

Iterative Deepening
1988 Pennington, Bosworth, Wheeler, Branch and Bound Algorithms for

Stiles and Raghuram Distributed Database Networks

1989 Jansen and Sijsterrnans Parallel Branch and Bound Algorithms
1989 Ilays and Mudge Overvi,,w of hypercube architectures

with 2 examples of use
1989 Miller and Penke Parallel Traveling Salesman Program

and factors which affect speedup

1990 Li and Wa Good discussion of anomalies in

parallel search algorithms
1990 Quinn Theoretical and measured evaluation of different

load balancing algorithms for the hypercube
1990 (<vetanovic and Nofsinger Different hypercube load balancing

using Continuous Diffusion

Table 2.2. Applications and inplenientations of Search Algorithms

2-22

global variables are among the main areas of research. Study is also underway on how parallel

algorithms work and ways to increase the speedup.

2-23

III. Methodology and Design

3.1 Introduction

This chapter discusses the methodology used in this research and the preliminary design of a

parallel A* algorithm. The methodology is described in section 3.2 and the preliminary design in

section 3.3. Complexity analysis of the design is provided in section 3.4.

3.2 Methodology

Designing and implementing a complicated sequential algorithm can be extremely difficult.

The additional complexities of parallel algorithms discussed in Chapter 11 accent the requirement

for a systematic approach to designing parallel algorithms. For all algorithms used in this research,

the first step was to develop a thorough understanding of the problem. Chapter II provides the

background for understanding NP-complete problems, search algorithms, and computer architec-

ture.

Next, preliminary and detailed algorithms were designed using a top-down approach. Each

function and data structure was designed to allow modification or incorporation into other al-

gorithmns. Many of the functions and algorithms are designed to be run sequentially on parallel

proceŽssors. This allows use of a personal computer using 13ORLAND C++ for the initial imple-

Inentation and debugging.

Then the sequential algorithms and functions were combined and implemented on the Intel

PC/2 hypercube and tested to validate proper execution. Many test. cases and examples were

used to attempt to test all function. Some functions were of a size or importance to be tested

completely. For example, the operation on the queue which stored the work to be performed aro

Critical to thf1 propor operation of the algorithm and could be exhaIaustiveIV tested.

Finally. data was co!lected and analyzed to evaluate the lprformance of the algorithm. Per-

formaric(nnrirics dismissed itn the next section were the maiin measurres of performance. The data

was evaluated trying to understand why changes to the algorithms produced these results, how do

the different algorithms compare, and which algorithm would be better for different problems.

-.3 Metrics

3.3.1 Speedup Many metrics can be used to measure the effectiveness of a parallel algorithm.

Chapter II gave the definition of speedup and efficiency of parallel algorithms as:

S = TserijaiTparaiiel

and

E= S/P

These are good metrics when trying to compare the total time to run different algorithms on the

same type of computer. However, it call be difficult comparing run times from different types of

computers because of different clock rates, communication schemes, memory schemes, and many

other factors. Therefore, small variations in run times on different computers is not important.

Normally, the best speedup achieved is linear. For example, if the time to run the sequential

program is 100 seconds and the parallel program time is 50 seconds using 2 processors, the speedup

is 2. Ideally, if 4 processors are used, the parallel time would decrease to 25 seconds for a speedup

of 4. Thus. in this example the speedup is linearly proportional to tile number of processors used.

lHowvver, Miller and Penke describe many limitations on the achievable speedup. First., the

startup and termination of all algorithhms are by nature sequential and cannot be parallelized.

Another limitation on thlie speedup is the extra work performed by the parallel search algorithm.

As d(escribed in the next section, parallel search algorithms perform extra. work as compared to the

sequential algorithin. Also, there are time costs aussociated with communication and/or nmcuiory

3-2

contentions in parallel computers not found oil sequential computers. All of these problems decrease

the amount of speedup achieved [Miller and Penke 1989: 133].

Sometimes the speedup is greater than linear. This is normally considered an anomaly and not

true speedup. Li and Wa provide the following reasons or conditions which can result is super-linear

speedup:

1. There are multiple solution nodes. This can allow the parallel search algorithm to find a

solution before the sequential algorithm.

2. Tihe heuristic function is ambiguous and allows for selection of more than one path.

3. The rule used to eliminate nodes isn't consistent with the heuristic function.

4. The tree structure of the search space causes nodes not expanded in the sequential algorithm

to be expanded when using multiple processors.

5. The feasible solutions are not generated in the same order when different number of processors

are used.

As they point out,, different combinations of these conditions cause the tree to be searched in differ-

ent orders depending on the number of processors used [Li and Wah, 1990: 21-29]. If the parallel

algorithm has super-linear speedup only on particular data sets, then these cases are probably

anomalies. Hlowever, if the parallel algorithm consistently has super-linear speedup over all data

sets , the sequential algorithm is not designed well and can be improved.

.3.3.2 Nodes Expanded Another metric which is less dependent on the type of computer used

is the number of nodes expanded by the algorithm. Using Figure 2.3 as an example, if node 4 was

a solution (goal) node, then the minimumn number of nodes would be expanded. However, if node

10 was the goal node. then expansion of all nodes not in its path was wasted work. Obviously, the

more efficient, algorithims expand fewer nodes not on the solution path.

3-3

Figure 3.1 represents the total search space for a given problem with the numbers representing

locations of optimal solutions.

Figure 3.1. Total Search Space

Figure 3.2 shows the portion of the space searched by DFS to find solution 1. If 3 was the

only solution, practically the entire space would be searched even using a branch and bound DFS

algorithm. If a "near" optimal solution was found early in the search in Figure 3.2, then most of

the search space could be implicitly checked without having to expand the nodes. This could save

time, but there is no way to guarantee a near optimal solution will be found early in the search.

3-4

0 ..
..

I)F:P'tf FIRST SEARCH USING BRANC AND BOUND

35
Figire 3.2. Svarrh Space For Depthi First Search

Figure 3.3 shows the search space searched to find a solution using BFS. Notice solution

2 is found first with very little of the search space explored. However, nearly the entire search

space must be explored if 3 is the only solution. Even with backtracking and branch and bound

algorithms, the program might take too long to run in both of these cases.

A better way to explore the search space is shown in Figure 3.4. No matter where a solution

is located in the space, the search concentrates on the path to it. While this seems obvious, the

hard part is designing an algcrithm which explores the search space in this manner. As seen from

these examples, the number of nodes expanded can be a "good" metric to determine the efficiency

of the search algorithm.

Ilowever, a problem can arise when using just the number of nodes as the only metric. Miller

and Penke state a sequential version of a search algorithm normally expands fewer nodes than a

parallel version. This is because many nodes in the sequential version are not evaluated because

their costs exceed the global best cost,. On a parallel search, the higher levels of the search space

can have many nodes which are less than the global best cost. Some of these nodes may be

expanhde needlessly before the global best coit is reduced. Also, the sequential version always

has the complete list of open nodes, or nodes waiting to be expanded. Therefore, the sequential

algorithm can always choose the best node to expand next. On one version of the parallel A*

algorithm, the complete open list is maintained on a central processor, i.e., a centralized list. or

partial lists are kept on each individual processor. This means that some processors are expanding

node- which are not the global best [Miller and Penke, 1989: 133]. Therefore. while tle number of

no,•es expanided is less for the sequential version, the total time can be much greater. ']This is one

reason why more than one metric should be used to evaluate an algorithm.

....
........

..............................
...

.
...........

...
.......

Xj

Figire :3.3. Searrh Sparf, For Breadth ["I[st Scarch

3-7

38

3.4 Understanding the Problem

3.4. 1 Traveling Salesman Problem The A* algorithm is a method used to determine the

solution to problems requiring a search of all possible solutions. To study its characteristics and

performance oil a distributed memory parallel computer, a family of problems is required to be

solved using the A* algorithhm. For this research, I chose the traveling salesman problem (TSP).

One reason the TSP was selected to use with the A* algorithm was because it is one of the

most widely studied families of NP-complete problems. Since it so widely studied, the sequential

implementation of TSIP is well understood and there are many good sequential algorithms already

dleveloped to compare the parallel algorithm against. Also, since any NP-complete problem can be

mapped to any other NP-complete problem in polynomial time, all NP-complete problems could

be solved using the TSP.

The TSP consists of a graph of cities and the associated costs to travel between cities. In the

TSP graph, the cities are represented by the vertices of the graph and the distances between cities

by the edges of the graph. If every city has a direct path to every other city, the graph is completely

connected. If the graph i:. traversed and every vertex is visited exactly once and the beginning and

final vertices are the same, then the traversal is called a tour [Christofides, 1975: 6-9]. The goal

of the TSP is to begin at an arbitrary city and complete a tour of the cities traveling the shortest

possible distance [Brassard and Brantley, 1988: 103]. The cost of the tour is the sum of tile costs

of the edges of the tour.

If the cost: of traveling bet ween cities I and j is stored in a cost matriz at location ij, then the

'ISP can be stated mnathteiiiaticallv as:

Minii-ze)

3_9

subject to

SXij 1, i E V, >Xj = 1, j E V, (3.2)
jEV iEV

Z E xij1, for all S C V,S 4 0, (3.3)
iES jEV-S

xij = 0 or 1, iJ E V, (3.4)

where xij = 1 if edge < i, j, > is in the solution and 0 otherwise. Equation 3.2 and 3.3 ensure

that the solution is a tour and equation 3.4 eliminates the possibilities of subtours [Rottman, 1990:

97-98].

To solve the TSP, all possible combinations or paths between cities must be checked to find

the optimal solution. This is accomplished by starting at an arbitrary city and adding cities one

at a time to the list of cities visited. After each city is added, the list is checked to see if the cities

are a tour and an admissible heuristic function is used to determine the cost of continuing down

this path to completion. If the cities are a tour, their cost is compared to the best cost found so

far and the smaller value is retained as the new best cost. If the cities are not a tour, then the

estimated cost returned by the heuristic function is compared to the best cost. If the estimated

cost is greater than the best cost, then this path is removed from the list of solution paths to be

explored since its cost is higher than a solution already found.

3-.4.- .4 * The A* algorithm is a specialized form of the best first algorithm. As discussed

in Chapter II, using an admissible heuristic guarantees finding an optimal solution if one exists.

Also discussed in Chapter II was that

f(n) = g(n) + h(n)

3- 10

where g(n) is the cost of the path from the root node to node n and h(n) is the estimated cost from

node n to the solution [Pearl,1985: 75]. The sequential algorithm is described by Pearl as follows:

1. Put the start vertex s on OPEN list

2. If OPEN is empty, exit with no solution found

3. Remove from OPEN and place on CLOSED list a node n for which f is a minimum

4. If n is a goal node, exit with the solution obtained by tracing back the pointers from n to s

5. Otherwise expand i, generating all children and attach to them pointers back to n. For all

children ,i of n:

(a) If it is ,not already on OPEN or CLOSED, estimate h(tt) and calculate f(il).

(b) If ii is already on OPEN or CLOSED, direct its pointers along the path yielding the

lowest g(rI).

(c) If ti required pointer adjustment and was found on CLOSED, place it on OPEN

G. (.o to step 2

[Pearl,1985: 64-65].

3,.5 !feluristic Estimate of h(n)

According to Felten, the selection of the proper heuristic function to estimate h(n) is critical.

A good heuristic allows the program to prune non-optimal branches of the search tree early in the

search [Felten, 1988: 15011. Kumar states that if h(n) is very close to the actual cost, then most

nodes expanded will be on the path to the optimal solution producing a very efficient algorithm

[Kumar. 1990: 44].

Two of the most. widely used admissible heuristics to generate h(in) are the minimum spanning

tree and(the assignment problem. Both are polynomial time algorithms, butr according to Kumar,

:i-11

the assignment problem is one of the best heuristics for use with the TSP [Kumar, 1988: 124].

Therefore the heuristic function used in these algorithms is the assignment problem. Christofides

defines the assignment problem as follows:

Given a number of resources and a number of requesters of those resources, and the
profit or usefuhiess of each resource to each requester in the form of a rating matrix
where elements aij is the profit of assigning resource i to requester j, the problem is to
assign each resource to one and only one requester in a way such that a given measure
is optimized [Christofides, 1975: 287].

This definition implies the number of requesters and the number of resources are the same.

In that case, the solution can be found in polynomial time. However, in cases where the number of

requesters and resources are not equal can be solved by adding dummy resources or requesters to

make the matrix square. The problem is now combinatoric in nature and in the class of NP-complete

problems. When used in the TSP, the assignment problem has the same number of resources and

requesters.

The assignment problem can be viewed as a matching of bipartite graphs. A bipartite graph

is defined by Christofides as:

a non-directed graph G = (X,A) is said to be bipartite if the set X of its vertices
can be partitioned into two subsets X, and Xb so that all arcs have terminal vertex
in X, and the other in Xb. A directed graph is said to be bipartite if its non-directed
counterpart GI is bipartite [Christofides, 1975, 40].

Mathematically, the assignment, problem can be stated as follows:

Given there are N requesters, W resources, and a cost matrix C

S-= I I ,j Ij > 0 for i = 1,2,..., N and j = 1, 2.. W (3.5)

find an assignment matrix

XIXi 1 (3.6)

3-12

such that

Xij = 1 if resource i is assigned to requester j

{0 otherwise (3.7)

subject to the constraints

n n N W

cxij = rninirhum >xij • xij : 1 (3.8)
i=1 j=l i-1 j=1

3.5.1 Assignment Problem Example As an example of the assignment problem, Figure 3.5

A is a 0/1 matrix representation of the requesters and the resources. A "1" in position xij of the

matrix means resource j can bc assigned to requester i and a "-" means it cannot be assigned.

Another matrix, Figure 3.5 B, is constructed having the costs of each resource being assigned to

each requester . After performing an element by element multiplication of the two matrices, the

final 0/1 matrix showing the cost to perform each task is calculated and shown in Figure 3.5 C.

3.5.2 Assignment Problem Algorithm While there are many algorithms to solve the assign-

ment problem, one of the most widely used is the Hungarian Method developed by Kuhn. This

algorithm finds independent sets which have minimal (or maximal) costs. Bourgeois and Lassalle

define a set of elements of a matrix to be independent if none of the elements are in the same row

or column [Bourgeois and Lassalle, 1971: 14]. This restricts the allocation of one resource to one

requester and vice versa. The independent sets are found by subtracting the smallest element of a

row in the cost matrix from all other elements in the same row. Then the smallest element in each

column in the cost, matrix is subtracted from each element in that column. This results in every row

and column having at least one null element for a N X N matrix. A row or column is covered when

it contains only one null element.. The smallest element in the uncovered rows/columns is then sub-

tracted from all the uncovered elements and added to null elements of the covered rows/columns.

3-13

RESOURCES RESOURCES

0 1 2 3 0 1 2 3

S 0 1 1 - 1 0 7 5 22 9

1 32 6 76 2

2 2 22 42 19 54

3 1 3 11 82 79 16

A B
AVAILABILITY MATRIX COST MATRIX

RESOURCES

0 1 2 3

S0 7 5 INF 9

INF = INFINITY

1 INF 6 INF INF

2 INF 42 19 INF

3 11 82 INF 16

C
FINAL MATRIX

Figure 3.5. Assignment Problem C st Matrix

3-14

The process is repeated until all resources are covered by independent elements, in which case an

optimal solution has been found [Kuhn, 1955: 25]

The algorithm derived from the word description is:

1. Construct a cost matrix C., where each cij is the cost of the link in the bipartite graph

between subgraphs xi E Xa and xj C Xb.

2. Subtract the minimum element in each row of C. from every element in that row.

3. Subtract the mininmm element in each column of C. from every element in that column.

4. For every row in the matrix with only one null element, mark the null element and cross out

any other null element, in that column.

5. If all rows are covered, i.e., contain a marked null element, then this corresponds to an optimal

solution and exit the algorithm. If all rows are not covered, go to the next step.

6. For every column in the matrix with only one null element, mark the null element and cross

out any other null element in that row.

7. If all colunis are covered, exit with an optimal solution. If all columns are not covered, go

to the next, step.

8. Mark any row which does not contain any miarked null elements.

9. Mark columns which have animarked null elements in a marked row.

10. Mark the rows that have a marked null element in a marked column.

11. lepeat steps 9 and 10 untiil nothing else can be marked.

12. Cover all unrnarkcd rows and all markcd columns by drawing a line through them.

13. Find the 16ininimim1 uncovered elemni'lit anld subtract, it from all other uncovered elements and

adlo it to ille elemecnlts that are covered by both a row and column cover, i.e., the intersection

of the lines.

3-15

14. Repeat steps 2 through 13 until an optimal solution is fohnd. The cost of the optimal

solution is found by summing the individual costs of the marked null elements in the original

cost matrix C,.

Using the cost matrix in Figure 3.6, an example assignment problem is solved. Notice in step

4 that the first null element to be marked was in the last row. Crossing out the two other nulls in

the same column allowed the remaining null in the first row to be marked. Now the other null in

the second row could be crossed out. Step 8 in Figure 3.7 begins the process of generating other

possible combinations of null assignments. Step 13 in Figure 3.8 shows the new cost matrix after

performing steps 8-13. With this new cost matrix, the algorithm is started again at step 2. Figure

3.9 step 5 shows the row and column null elements. The final solution is determined from assigning

the null elements in a column (RESOURCE), to the row it is in (REQUESTER). In this example

the solution is:

RESOURCE REQUESTER
1 2

2 1
3 4
4 3

3- 1 G

RESOURCES

0 1 2 3

S0 7 4 3 8 4 1 0 5

1 5 5 4 9 1 0 5

2 2 7 9 2 0 5 7 0

3 10 3 1 6 2 0 5

STEP 1 STEP 2

COST MATRIX SUBTRACT MIN ROW ELEMENT

4 0 0 5 4 noX 5

1 0 0 5 1 x X 5

0 4 7 0 0 4 7 0

9 1 0 5 9 1 5

STEP 3 STEP 4

SUBTRACT MIN COLUMN ELEMENT INDEPENDENT NULL

ROW ELEMENTS

Figtire 3.6. Assignment Problem Part 1

3- 17

4 -01 X 5
[] MARKED ELEMENT

IX X 5

F1 4 7 x X CROSSED OUT ELEMENT

9 1 on1 5

STEP 6

INDEPENDENT NULL ROW

AND COLUMN ELEMENTS

CHECKED ROWS

4 FLI 0 5

0 0 5 X

F-I 4 7 0

9 1 IT] 5

STEP 8

CHECKED ROWS

Figure 3.7. Assignment Problem Part 2

3- 1Is

MARKED ROWS

4 El0 0 5

1 0 0 5

[o• 4 7 0

9 1 I-g 5

jx x MARKED COLUMNS

STEP 9

MARKED ROWS
AND COLUMNS

MARKED ROWS

4 Xl 0

1 0 0 5WX

Fl 4 7 0

9 1 L 5N

M DMARKED
COLUMNS

STEP 10
MARKED ROWS WIT H

MARKED ELEMENTS IN
MARKEDF COLUMNS

Figure :.8. Assignment Problem Part 3

3- 1 9

MARKED ROWS

4x

5X_

9 5 X

XX •MARKED COLUMNS

STEP 12

3 0 0 4 3 x 4

00 04 WolX X4

0 5 8 0 x 5 8 F

8 1 0 4 8 1 Fl 4

STEP 13 STEP5

NEW COST MATRIX SOLUTION

I igturf 9. Assignmiient Problem Part. 4

3-20)

3.6 High Level Design

Design of an algorithm can be divided into three broad categories, high level design, low level

design, and implementation. High level design consists of the major steps required to p •rforln the

task and doesn't consider architectural peculiarities of the machine. Low level design adds more

details to the algorithm and begins to customize it for a particular architecture. Implementation

provides a finished program capable of running on a computer.

Designing a parallel algorithm has all the difficulty of designing a sequential algorithm with

many other considerations besides. Parallel considerations include, nmutual exclusion of data, con-

trol of the algorithm, timing between processors, load balancing, and decomposition techniques.

Only control of the data and decomposition techniques are discussed in this chapter. The other

considerations are discussed in Chapter IVN' during low level design.

3.6.1 Sequential TSP Algorithm

-1. 6. 1 .1 Terms and Definitions In all the algorithms discussed, there are some common

teriis and definitions which are given now. Chapter IV also provides more details of the data

structures used and gives examples for some of the terms.

"* nuinmcities - The nmbnber of cities to be visited in the problern

"* NODE - A structure which has thlie fields vector, cost, and link. Vector contains the cities

which have been visited, link points to the next NODE iii the OPEN queue and cost is lhe

cost of visiting thlie cities it vector

"* IBEST - A structire of type NOI)DE which has the fields vector, cost, and link and contains

tile current best solution used to bound tlie search

"* OPEN - The open list kept ini an array of NOI)Es as described above. References can be

mlade, to ally elvnlemlen of tlie queue and field of the NOI)E by using the element. number and

3-21

the field name. For example, to compare the cost of the tnode on the front of the queue against

the current BEST.cost, the following is used:

if(OPEN [q-f ront].cost < BI)EST.cost)

"* free list - A subset of the OPEN array which links elements of the array available to store

NODEs

* WORK-REQUEST - Label used in the algorithm to identify messages sent by Workers to

the Controller requesting a NODE front OPEN for expansion

"* node-status - Status of Worker, either busy or available for work

"* NEWNODE -Label used in the algorithm to identify messages sending NODEs from the

\Workers to the Controller for insertion in the OPEN list

"* DONE - Label used in the algorithm to identify the terminate message sent by the Controller

to the Workers

"* EXPANDNODE - Label used in the algorithm to identify messages sending a NODE from

the OPEN list on time Controller to a Worker

.1.6.1.2 TSP ALGORITHM The hasis for thel parallel TSP search is the sequential

TSP algorithm. The sequential algorithim was modified from the one developed by lul' Mike

lottman to solve the TSP on the iPS'C/I hyperctibe [Hottman 1990: .7-1'J5]. This algorithm uses

the A* definition in Pearl [Pearl, 1988: GI] and thel definition of TSP. The assignment problenm is

the function used to calculate the heuristic h(,,). The sequiential algorithm is:

Sequential T7SP

Buihl cost matrix
Perform depth first search of one node to ,btaiim initial BEST.cost
Generate starting node in search trer'

3-22

Loop while (cost of NODE on front of OPEN i BEST.cost)
Remove NODE from OPEN

Loop until all cities have been checked
Add a city to end of partial tour of NODE removed from OPEN
If city has not been visited in this partial tour

Calculate h(n) and f for new partial tour
If (new NODE.cost < BEST.cost) and (cities visited is a tour)

BEST = NODE
If (NODE.cost i BEST.cost) and (cities visited is not a tour)

Insert new NODE into OPEN
END Loop until all cities have been checked

ENID Loop while (cost of NODE oil front of OPEN < BEST.cost
Calculate/Collect, results

ENDScquential TSP

This algorithm removes a NODE from the front of OPEN and adds one city to the NODE.vector

partial tour. It checks the resultant. partial tour to see if the added city had already been visited

and if tlie resultant tour was a complete tour. If the city was already in NODE.vector, the NODE

is dlicarde I. If the city was not, in NODE.vector, was a complete tour, and at. a lower cost than

the current best cost, then the node becoines the new BEST. If it was not a tour and the cost

was less than BEST.cost, the node was inserted into the OPEN queue for possible selection for

ex pansioln. lThis Continues until all possible cities have been added to the original NOI)E.vector

partial tour. The algorithin then removes the next NODE from OPEN and begins the cycle again.

[his contitues until OPEN is empty or the cost of the NODE at the front of OPEN is greater than

BEST.cost.

For example see Figure 3.10. The search begins by mitiallv placing node I on OPEN. All

possible children of node I are generated with their associated estimate cost to completion, f. and

placed oin OPEN. '[he NODE willh the lowest f value is removed from OPEN and expanded. After

each node is expanded, the chiilren are placed on OIPEN and the cycle is repeated. Notice that

node 3 hia.is the partial tour of 1 - 3 and each child of node 3 adds onle city to that. tour and generates

.nyew cost. Notice also that. node 7 only generates two children because tie other possible cities

have a lreadv been visited. The NODEs are kept in a priority queuie so the bcs node is expanded

3-23

vector -

=178 134 f=140 f=155f2=t17 vector vector= vector=vector = 1-3 1-4 1-51-22345

f = 140 f= 134 f= 137
vector = vector vector
1-3-26 1-3-4 1-3-5

f= 134 f= 134
vector =910 vco=
1-3-4-2 1-3-4-5

1(=135 f =137
vector = vector =
1-3-4-2-5-1 1-3-4-5-2-1

Figure 3.10. Example Search Graph for 5 (Cities

3-224

next. The sorted OPEN list is the key element to making this a best first strategy and the function

f = g(n) + h(n) makes it A*.

3.6.2 Decomposition Technzques In determining the high level design, the first thing to

consider is how the problem is to be decomposed onto the parallel computer. According to Ragsdale,

two of the main decomposition techniques are data and control decomposition.

Data decomposition is where every processor has the same task and operates on different data

sets. Information may or may not be passed between the processors as the programs are executed.

Ragsdale provides three examples where data decomposition is well suited:

"* Problems where the data is static. Examples include matrix operations or finite difference

calctulation on a mImesh.

"* Problems where the data structure is dynamic, but is somehow tied to a single entity. Exam-

pies inclulde large multi-part problems with easily generated sub-problems.

"* Problenms where thle domainm is fixed, but the computation within the various regions of the

domain is dynamic. For example, the search space of an NP-complete problem is bounded (no

imatter how large), but areas of the search graph can be dynamically generated for exploration

[Vagsdale. 1990: 4.A - 1.5].

(Control, or functional, decomposition focuses on the flow of control in an algorithm. Ragsdale

lists two types of control decomposition. The first, functional decomposition, looks at a probleim

as a set of operatiotis or functions. The functions are divided up and put on separate processors.

l)ata which requires a particumlar function must be sent to the processor which has that. lunction.

The other control decomposition technique is called Worker/Manager. One process is the

"imiaager" and farms out tasks to the "worker" processors. The manager keeps track of the work

to he donle and assigmis tile work to t~he workers as they become idle [Ragsdale, 1990: 4.5].

3-25

For the first design, the Worker/Manager decomposition is used to control the overall flow

of the algorithm and a data decomposition is used on the worker nodes. This allows the use of

the centralized list for load balancing as discussed in Chapter II. Using data decomposition on the

worker processors allows the large data sets to be manipulated without having to constantly pass

information between processors. This allows different branches of the search tree to be explored

simultaneously.

3.6.3 High Level Algorithms Ragsdale suggests the following general approach to designing

parallel algorithms using data decomposition

"* Distribute the data

"* Restrict the computation so that each processor updates its own data

"* Put in the communication

[Ragsdale, 1990: 5.1].

Using the sequential algorithm as a starting point, two algorithms are developed. The first.

a1lgorithrn is the manager which distributes the dat~a and controls the overall flow of the algorithm.

The second algorithm is the worker and performs the actual computations required to execute the

A* algorithm. TFhe third step in the design process, communication, is accomplished in both the

worker and manager algorithms. The designs developed are very similar to the sequential TSP

design with the functions divided between the Control and Worker algorithms.

[lhe high level ('ontrol design is:

High L(rcl TSP Control D sign
Rleceive cost inatrix from host.
Generate starting node in search tree
While (nodes still left on OPEN)

Send work to idle Workers
End While, (nodes still lteft on OPEN)

3-26

Terminate Workers
Collect, results

END High Level TSP Control Design

The Control routines are very simple, well known types of routines and so little time will be

spent discussing them. The Control algorithm contains most of the initialization and termination

routines. The only Control routines that are not used in the sequential TSP algorithm are "send

work to idle Workers" and "terminate Workers". These routines are peculiar to a parallel imple-

mentation of the algorithm and provide control information to the workers. On a serial computer,

the control is provided by the sequential nature of the algorithm. Since the statements are exe-

cuted sequentially, there is no conflict over which statement is executed next or when the program

terminates.

The high level Worker design is:

High Level 7"SP Worker Design
Receive cost matrix from host
While (not terminated)

Request and receive work from Control
Pe, form A* search

Broadcast solution if better than current best solution
Send local OPEN list to CONTROL
Send results to Control

End While (not terminated)
END High Level TSP Worker Design

The heart of the Worker algorithnm is the "Perform A* search" routine. This routine is

the sequential version of the TSP A* algorithm executed on multiple processors. The routines

which determinie the efficiency and speedup of the parallel algorithm are "Request and receive

work from Control", "Broadcast. solution". and "Send local OPEN list.". These routines, along

with their corresponding routines on Control, control when and how information is passed between

processors. These routines are further discussed in low level design.

3-27

3.7 Summary

This chapter presented the methodology used to attack the research, the metrics used to

ev-iluate the efficiency of the algorithm, developed, aad the high level design. Also discussed was

a more detailed explanation of the of the TSP problem. The preliminary design was partitioned

into two separate algorithm I ased upon the "worker/manager" concept of control decomposition.

The worker algorithm was further rerined usi.g data decomposition. The next chapter provides

detailed design of the algorithms along with the data structures and functions used to implement

the main algorithms.

IV. Low Level Design and Implementation,

4.1 JItroduiction

In this chapter,the data structures used in the programs, the routines which comprise the

programs, and the rationale behind the decisions to use each routine or structure is discussed.

1)iagrains showing the relationship between programs and routines is provided in Appendix A.

, 2 Data Structures

'Fhe basis for most of the data stored in these programs is the following C language structure:

type(def strict {
iit wect or[V ', TORSIZE+ 1];
int cost:
int link:

}NODIE;

"The type .VODL' has tHree fields, each of which is of type integer. The first field, vector, is

an array of size VECT'OIRSIZE. VECTORSIZE equals the number of cities in the problem. The

order of tlite cities in NODE.vector is the order in which the cities are visited. The second field in

NODE, r,,st, contains the cost of the partial or complete tour stored in vector. The final field, link,

is us,,d as a pointer to the next NODE when NOL)Es are stored on the OPEN list in a queue.

VECTOR COST LINK

ARRAY OF INTEGERS,
NUMBER OF ELEMENTS INTEGER INTEGER
EQUALS, NUMBER OF
CITIES

Figure 4.1. Structurt, of Type NODE

Anothletr ,]t;it. sturtire is the (pUiee iised to store tuodes wailint, to he expanded. The queuue

is ;an urray of NOI)Es link-ed using the NODI)E.link field to d(t,,'.rmiuu which clement in the array is

,1- I

next on the queue. Also in the array is a list of elements which have no data and are considered

free elements. Initially, all the elements are on the free list. Associated with the queue are pointers

to the front of the queue and free lists with variables to show the queue status and queue length.

NODEs are inserted into the queue using an insertion sort so that the NODE with the smallest

cost is at the front of the queue. The free list is kept as a last-in-first-out queue.

An array was used to implement the OPEN queue for two reasons. The main reason is that

the hypercube is a distributed memory architecture and each processor has its own distinct memory.

Th'lis architecture does not allow information passing using a linked list, since the pointers to memory

locations have no meaning on a different processor. Therefore, if a linked list is used, the queue

on each Worker must be put, into an array before transmitting it to the centralized list kept on

theI (ontrol processor. The other reason is that while the OPEN queue can become unmanageably

large for A* search problems, the manner in which the heuristic estimate for hi(n) is calculated is

relatively accurate and keeps the OPEN list from becoming very large. This allows the array to be

of a inmiageable size. around 9,000 elements, and still be large enough to contain the OPEN list.

II Figure 4.2, tlw array is comprised of 10 elements, six on the queue and four on the free

list. The front of the- queue is pointed to by q-front and the front of the free list by freeptr. The

status is given by q-status as busy and the q-length is six.

Aftor NL\AKWNODEI is generated and inserted into the queue, the array and associated variables

art as slhown in Figure 4.3. Renmoving a NODE from the queue results in the configuration shown

inl ligure 1 .

.4-2

VECTOR COST LINK
ELEMENT 1-5-6

0 1253

1-3-9-4-
1 5-7-8-2 180 6

qjront = 5
0-0-0-0-0-

2 9999 80-0-0-0-0
freeptr = 4

3 6-9139 1
6-9

0-0-0-0-0- qstatus = BUSY

4 0-0-0-0-09 2
end of list = -1

1-5-7-9-
6-8-2 102 9

qjlength = 6
1-4-3-2

6 192 -1

0-0-0-0-0-

7 0----9999 -1

0-0-0-0-0-

8 0-0-0-0-0-

1-6-5-7-8-
119 09-10

Figure 4.2. Structure of the OPEN Queue

4-3

VECTOR COST LINK
ELEMENT

1-5-6

0 125 3

1-3-9-4- 1806
1 5-7-8-2

qjfront = 5
0-0-0-0-0-

2 9999 8
0-0-0-0-0

freeptr = 2
1-2-3-4-

3 6-9139 46-9

q~status = BUSY
1-4-6-8-9-41771
10-3-5

end of list=- 1
1-5-7-9-

6-8-2 102 9
qjlength = 7

1-4-3-2
6 192 -1

0-0-0-0-0-

7 0-0-0-0-0-1

0-0-0-0-0-

8 0-0-0-0-0-

1-6-5-7-8-
119 0

9-10

NEWNODE 10-3-5 177

Figure 4.3. Inserting Into the OPEN Queue

4-,1

VECTOR COST LINK
ELEMENT

1-5-6
0 125 3

1-3-9-4- 180 6
5-7-8-2

qjfront = 9
0-0-0-0-0-

2 9999 8
0-0-0-0-0

1-2-3-4-
freeptr = 5

3 139 46-9______
q_status = BUSY

1-4-6-8-9- 177 1
10-3-5

end of list - -I
0-0-0-0-0-

5 9999 2
0-0-0-0-0 q-_______6q length = 6
1-4-3-2

6 192 -1

0-0-0-0-0-

7 0-0-0-0-0 -1

0-0-0-0-0-

8 0-0-0-0-0 999 7

1-6-5-7-8-
119 0

9-10 .4 et fo eO__

Figure 4.4. IDelet~ing from thle OP~EN Queue

,l-.

1 2 3 4 5

1 999 13 54 79 23

2 46 999 2 89 53

3 22 52 999 16 87

4 27 59 32 999 17

5 0 44 73 16 999

Figure 4.5. Cost, Matrix Example

The other data structure is the matrix used to store the cost of traveling between cities. This

is a square matrix with tihe row/column lengths equal to the number of cities in the problem. Each

elenient of the matrix is an integer value. For example, in Figure 4.5 the cost of going from city

5 to city 3 is 73 while the cost of going from city 3 to city 5 is 87. Notice the cost matrix is not

syinnetric. (hanges to the data structures are discussed later in the chapter as appropriate for

algorithm changes.

4.3 Low Lcel Design

"The low level design provides more details of the program and considers the architecture of

the computer on which it will be running. Since these programs will run on the iPSC/2 hypercube,

its ,i'essa-ge passing protocol and communication time must be considered. Also, the hypercube

dloes Inot have an efficient interface between the user and processors. For this reason an additional

algorit hin, Hist, is run on the host processor to provide the user interface.

This sectiion also describes in greater detail the high level design developed in Chapter 111.

'lihe (Cnmtrol prograim is discussed first, then the Worker program, and finally the functions used to

implement specific actions of the programs. For each program, a pseudo code program is given.

4..j. 1 Random (City Generator A random number generator is used to build the cost matrix

which is thli stored in a file to be read into the niain prograii later. This was done to allow repeated

to-stingl ,f the" saiuie Iproblem using different size and possibly different types of hiypercubes. The

first clnieunt stored in the file is tIhe, number of cities in the, problem. 'ite random number generator

assigns values of front 0 99 for tlihe costs to travel between cities.

. ? 2 C ontrol IPrograu As developed in (Chapter Ill, the, ('ontrol high level design is as

'I i 7

High Level TSP Control Design
Build cost matrix
Perform depth first search on one node to determine initial BEST.cost
Generate starting node in search tree
While nodes still left on OPEN or any Worker BUSY

Send work to idle Workers
Terminate Workers
Collect results

END High Level Control Design

The high level Control design is further developed by adding communication requirements

and more specific details to the algorithm and is shown below:

Low Level TSP Control Design
Receive cost matrix from host
Perform depth first search on one node to determine initial BEST.cost
(Generate starting node in search tree
While ((OPEN not empty) or (any Worker busy)) loop

While (WOIRKIEQUEST message from Workers) loop
Receive IVORKREQUEST message
Ilentify Worker which sent message
Set appropriate node-status to available

End While (WORKREQUEST from Workers) loop

While ((NEWV-NODE message from Workers) and (OPEN not full)) loop
Receive NEWVNODE message from Worker
Insert NODE into OPEN

End While ((NEWVNODE from Workers) and (OPEN not full))
While ((OPEN not empty) and (Worker is available) and

(front NODE on OPEN cost < best.cost)) loop
l)elet- NODE from front of OPEN
Send NODE to Worker for expansion

Elnd While ((OPEN not empty) and (Worker is available))
If (.NEW\BEST message from Worker)

Receive NE\VBEST message from Worker
If (N I,\VBEST.cost < current best.cost)

current best = NEWBEST
Prune OPEN list of NODEs with costs > best-cost

End If (NEWBEST.cost < current best.cost)
End If (NEW-BEST from Worker)

End While ((OPEN not empty) or (any Worker busy)) loop
Send I)ONE message to all Workers
Collect results from Workers

END Lo L(rel (oritrol Design

As long as the OPEN list is empty or the Workers are not all idle, the Control processor

continually polls the receive buffers of the iPSC/2 for a message from the Worker processors and

takes appropriate action when a message is received. For example, if a NEWBEST rriessage is

received, the cost is compared to the current BEST.cost and then the OPEN list, is pruned of

unnecessary NODES. When the while loop is exited, a terminate message is sent to all Workers.

Finally, data is collected from the Workers.

If more than one Worker is available to send work to, the algorithm selects the processor with

the lowest number. For example, if processors 3,4,and 5 ar. all available, processor 3 and then

processor 4 receive work. If processor 3 requests work again before processor 5 receives work, it

will receive the work before processor 5. This skews the efficiency of the individual processors so

lower number processors have higher efficiencies.

Terminating a centralized list A* algorithm requires that the Worker processors be idle and

the OPEN list be empty. Idle Workers are determined by the Worker Busy variable. When work

is sent to a Worker, busy is set to "true", and set "false" when a work request is received by the

('ontrol processor. The OPEN list is checked at the beginning of each loop through the algorithm

to ensure it. has valid work. If either the OPEN list is not empty or any Worker processor is not

idle, the algorithm continues.

4. 3. i`. Worker Program The high level design from Chapter 3 for the Worker is:

High Luc! 7•IS lWerkcr Dsign
Build cost matrix
While (not terminated)

Request. and(receive work from Control
Perform A* search
Broadcast solution if better than current best solution
Send local OPEN list to CONTrIOL
Send results to ('ontrol

End VlWhile (not terminaied)
END hi~qh L• 1(l Tt'7) Worker D1)(,qin

4-9

Like the Control algorithm, the Worker algorithm is further developed in the low level design.

Low Level TSP Worker Design
Receive cost matrix
While (not terminated by DONE message)

Send WORK-REQUEST message to Controller
Receive EXPAND-NODE message from Controller
Loop until all cities have been checked

Add a city to end of cities which have been visited
If new city has not been visited in this partial tour

Calculate the cost (h(n) and f(n)) for new partial tour
If (new NODE.cost < BEST.cost) and (NODE.vector is a tour)

BEST = NODE
Broadcast NEW-BEST to all processors

If (NODE.cost < BEST.cost) and (NODE.vector is not a tour)
Insert new NODE into OPEN

END (Loop until all cities have been checked)
END (Loop while (not terminated by DONE message))
Send results to Controller or Host

ENDLow Level TSP Worker Design

This algorithm is very similar to the sequential TSP developed in Chapter 3. See Figure 3.10

for the detailed explanation and for an example of this algorithm. The main differences from the

sequential TSP algorithm are the communication hetween processors and the algorithm control is

provided by the Control algorithm.

4.3.4 Host Prograrn An algorithm to provide interface with the user is provided by the

Host program which runs on the iPS(-'/2 system resource manager (SRM), or host processor. This

algorithm prompts the user for informnation needed to run the TSP program, performs initialization,

loads the Control and Worker processors, and displays final results. The design for this algorithm

is:

Low Lurel TSP Host Design
Print initial mnessages
Request and receive file name where cost. matrix is stored
Copy cost matrix
Load (Control and Worker prograils

41-1

Send cost matrix to Control and Worker programs
Receive results from Control and Worker programs
Print results and termination messages

END Low Level TSP Host Design

4.3.5 Subroutines Much of the work in the Control and Worker main programs is performed

using calls to subroutines or functions. This section discusses the functions used in both Control

and Worker programs.

The most important function is the assignment problem used to calculate h(n). This al-

gorithm is discussed in detail in chapter 1II. Another function, Tour, traces through each city of

NODE.vector to see if the path goes through each city only once and ends at city 1. It returns a

boolean flag stating whether NODE.vector is a tour. The algorithm is:

To u r
Initialize test array of size num-cities to 0
Set Tour flag to FALSE
Mark city 1 as visited in test array
While (city not visited twice) loop

Go to next city in NODE.vector
Mark city as visited in test array

End While (city not visited twice)
If (all cities visited once) and (end at city 1)

Set, Tour to TRUE
End If (all cities visited once) and (end at city 1)

END Tour

The function to determine if the city addl(i to the end of NODE.vector is a feasible selection

is in-path. This function trac,-s through NODE.vector to determine if the city has already been

visited in this partial tour. It returns a boolean flag stating whether the city has already been

visited. The algorithm is

ln-path
Set Inpath flag to FALSE

1-11I

While (cities not visited in NODE.vector) loop

If (city in NODE.vector = city being added)
Set In-path flag to TRUE

End If (city in NODE.vector = city being added)
End While (cities unvisited in NODE.vector)

Because the C language does not support direct copying of arrays, a function called Copy-node

was made. This function copies the array stored in NODE.vector to another variable of type NODE.

'[iTe other fields in the NODE structure are also explicitly copied. The algorithm is:

Copyjnode
While (unvisited elements in NODE-.vector) loop

NODE_2.vector = NODEl.vector
End While (unvisited elements in NODE-lvector)
NODE_2.cost = NODEl.cost

END ('opy-iode

Unlike a sequential algorithm, several processors could locate solutions which are better than

the current best solution and broadcast it at relatively the same time. The broadcasted message

is 150 bytes and according to Bomans and Roose, this size message takes approximately 800 p

seconds to transmit. Because of the near simultaneous broadcasts and communication delays, a

processor could receive a NEW-BEST message which was higher than the current BEST.cost stored

at that processor [Bomans and Roose, 1989: 16]. To insure the best solution is stored in BEST,

every N EWVBEST message is compared against BEST.cost and the smaller value is returned. The

algorithli to perform this is Get-best and is:

(,rlKbfs/
WVhile (receiving NEWBEST messages) loop

If (NEWABEST.cost < BEST.cost)
BEST = NEWBEST

End If (NEWBEST.cost < BEST.cost)
Vnd WVhile (N EWBEST message)

END (,rt-brst

4-12

The OPEN list is stored in an array of NODEs. Four functions control all actions associated

with data manipulation of the OPEN queue. The first function, q-init, initializes all elements in

the array including the NODE.vector array within each element. It also initializes the link and cost

fields of NODE in each element of OPEN. Finally, all other variables associated with the OPEN

queue are initialized. The algorithm for q-init is:

q-init
For (all the elements on OPEN)

For (all the elements in NODE.vector)
Set NODE.vector field to 0

End For (all the elements in NODE.vector)
Cost = INFINITY
Link = next element of OPEN

End For (all tIhe elements on OPEN)
Set link field of last element on OPEN to (end of file marker)

q[status = EM!PTY
(1 length = 0
Pointer to free list = 0

Pointer to OPEN list = (end of file marker)
End (all the elements on OPEN)

END q-1nit

The NODE,1 are deleted from OPEN by the algc.ithm delete-q. This algorithm deletes the

NODEs, changes the queue length variable, and adjusts the pointers to the front of the OPEN

queue and free list. Error checking is also p-rformed to provide a warning message if the algorithm

attempts to delete a NOD)E from an empty queue. Finally, the status of the queue is checked and

changed as needed. The algoriti in Is:

dilclclq

If the quetue is enmpty print. warning message
If till queue is not enmpty

[)ecre rlrelit. quleue length by I
Remiove NODE1 from the front of the queue
Adjust. pointer to the front of the queue t.o point, to the new front

Adjust pointer to tIhe front, of the free list to point to the new front
Adjust the (,utne status as appropriate

eind (If the qileie is not ernipty)

.1- 13

END delele-q

The third function which manipulates the queue is insert-priority. This algorithm performs

an insertion sort of the NODEs into the OPEN queue, changes the queue length variable, and

adjusts the pointers to the front of the OPEN queue and free list. This algorithm also performs

error checking and updates the queue status. The algorithm is:

zzsert-priorily
if the queue is full print warning message
If the queue is not full

Increment queue length by 1

Insertion sort the NODE into the OPEN queue
Adjust pointer to the front of the queue to point to the new front
Adjust pointer to the front of the free list to point to the new froat
Adjust the queue status as appropriate

end (If the queue is not full)
END tnscrtpriordy

The filal function to work withi the queue is prune-q. After a NEW-BEST solution is found,

this fuiction is used to bound lhe search by removing, or pruning, states from the search space

tree. This is (lone by removing from OPEN all NODEs which have a cost greater than or equal

to the cost of the new solution. Notic,, that NOI)Es with equal cost are also eliminated since the

algorithm only searches for a best solution not all best solutions. Tht ,algorithm is:

prun-c q
Traverse thf, OP|EN queuti until BEST.cost. !eq "ODE.cost
D)elete all NODEs in OP)EN beyond the current NODE

Adjust oiuntrs ill the free list.
Adjust the (queuei status ,is appropriate

END prumruq

I- 14

,.4 Distributed List

Quinn theoretically proved and Abdelrahrnan and Mudge demonstrated that as the number

of processors increased, the communication to/from the master processor allocating work to slave

processors eventually becomes a bottleneck. To eliminate this bottleneck, distributed list algorithms

are used [Quinn, 1990: 385] [Abdelrahrman and Mudge, 1988:1496-1498].

In this section, the modifications required to change tile parallel TSP control from a central-

ized list to al distributed list (DL) are discussed. This entails changing the high level decision of

using the functional worker/manager decomposition and use only data decomposition on all pro-

ce.ssors. This eliminates the Control processor, but adds another Worker processor. The global

OPI 'N queue is now maintained in a local OP'EN queue on each processor. Extra communication

between processors is required to perform the tasks previously done by the Control processor such

as load balancing and program termirnation. This section looks at. implementing distributed list

qii:'ues with and without load balancing.

41.,•.1 DL Without Load Balancing There are two main methods used to implement a dis-

t rihl:ted list. <luene. The first method generates and distributes an initial work load and then no

load balancing, or work sharing, is performed. Work which is generated by a processor stays on

thIat processor. When a processor finishes its work, it remains idle until all processors finish. If the

york genmrated by the processors is not approximately equal, processors may be idle for a relative!'.

long period of time waiting for all the processors to finish [Ma and others. 1988: 1509-15111.

[lhe new design for distriluteld list TlSP withouit load balancing is:

7SP IVo'k r Vthm Aut Load Blalancing De.siqn

IVeciive cost matrix from host
lPerform depth first search on one node to detrnmin,' initial IIKS'l. cost
(,'mierate starting node in search tree.
I)st rihniitFe desc(indents of iniit ial nods- :iriong all process(rs

\Vhi (I iot tf.rIn iI at .(Il I)()ND nV, .s I ge)
N\'ilo (O)PFIN not EmI"I-)

Remove NODE from OPEN queue
Loop until all cities have been checked

Add a city to end of cities in NODE.vector which have been visited

If new city has not been visited in this partial tour
Calculate the cost (h(n) and f) for new partial tour
If (new NODE.cost < BEST.cost) and (NODE.vector is a tour)

BEST = NODE
Broadcast NEWVBEST to all processors

If (NODE.cost < BEST.cost) and (NODE.vector is not a tour)
Insert new NODE into OPEN

END (Loop until all cities have been checked)
END While (OPEN not EMPTY)
Terminate the processors

END Loop while (not terminated by DONE message)
Send results to Host

END TSP Worker without Load Balancing Design

Again, this is just the sequential TSP algorithm with communication and controi to allow the

parallel operation. After the children of the initial node are generated, they are distributed equally

aniong the processors. Each processor then performs the sequential TSP until all of the NODEs

on its local OPEN have been explored.

TFo terminate the parallel program, all processors must be idle. This is determined by sending

a iiessage, RING, which is only received when the processor is idle. The body of the RING message

is empty and just the fact that the message was received is significant. The processor identified

by the hypercube operating system as node 0 initiates RING when its OPEN queue is empty and

sends it to the next logically numbered processor. Once a processor is idle, it receives the RING

and passes it to the next processor. When processor 0 receives the RING again, all processors are

idle and a D)ONE message can be sent terminating all the processors.

4.4.2 DL0 With Load Balancing The main deficiency of the)I, without load balancing algo-

rithin is the that work could be unevenly distributed and some processors are idle will others still

have large amounts of work to perform. As NIa and others show, the elf ciency of distributed lists

withomt load balancing can ho vwry low [NIa ;ad otlhrs. 1988: 1509-1.511]. The obvious solutioln

is to, have an idle processor reqpicst work from a busy proce'ssor. IThe idle processor first resli(sts

I if;

work from its nearest neighbors and then request work from all other processors one at a time.

Once an idle processor receives work, no more requests for work are issued. The busy processors

must periodically check its receive buffers to see if it has received a work request. The only way a

processor can become idle is if all processors are either idle or do not have enough work to share.

Felten, Ma, Penky and Miller, Cvetanovic and Nofsinger, and many others discuss when it

is appropriate for a processor to share work. They all agree there is a trade off between sharing

the work to keep a processor from being idle, the communication overhead involved with the work

sharing, and the possibility of a processor sharing too much work and having to immediately

request work itself. They state the measure of when to share, 0, is problem specific and must be

determined experimentally. [Felten 1988, 1504] [Ma and others, 1988: 1507] [Miller and Penky,

1989: 133] [Cvetanovic and Nofsinger, 1990: 87] . Since nothing was found in the literature to

provide any guidance to the factors which influence 3, this research investigates these factors.

According to Felten, there are two requirements to terminate a DL process with load balancing

on a hypercube. The first. requirement is the same as with the DL without load balancing that all

processors be idle. The second is that all messages have been received [Felten, 1988: 1502]. The

requirement to have received all messages insures no work was distributed to a processor buti not

re'eived by that, processor. To keep track of the number of messages sent, each processor keeps a

local couit of the messages sent/received. A variable is incremented when a message is sent and

,lcremented when a message is received. To t.erminate the process, the local message count can be

any nuimber, but the global mnessage count mmust equal zero. To accomplish this, the Hing imessage

body froiim the D)l, without load balancing is changed to a data structure of the forii:

typ#,df.f struit {
mit m ietssa•e _ ((l mit ;

iI)t I)!jil_ l •(ltu•ie

4-1N7

This termination algorithm differs from Felten's termination in the method used to determine

if all processors are idle. Like the DL without load balancing algorithm, the DL with load balancing

algorithm uses processor 0 to again initiate the RING when it becomes idle and send it to the next

logically numbered processor. If a busy processor receives the RING, it just sends it to processor

0 and continues working. When an idle processor receives the ring, it increments the number done

and adds its message count to the total message count. When processor 0 receives the RING, it

checks FINISHED to validate that all processor are finished and all messages received. If either

condition is not met, processor 0 again sends the Ring.

Felten's algorithm differs by having all processors, busy or idle, send the RING to the next

processor. When processor 0 receives the RING, it checks to see if any processor is busy. Again,

if either condition is not met, processor 0 again sends the Ring. In the DL with load balancing

algorithm, at most one busy processor is interrupted by the RING message. In Felten's algorithm,

at best only one busy processor is interrupted and at worse [(numberof nodes) - 13 busy processors

are int errupted [Feltejin, 1988: 1503]

Beard modified Felten's algorithm for termination and also used it. for load balancing. A busy

pro es.•or handles the PIING similar to the Felten algorithm and sends it to the next processor.

llowever, when an idle processor receives the RING, it differs from Felten's algorithm in that the

PING now allows the processor to request work. Since only one processor can have the RING at

a time, only one processor can be requesting work. Especially on computers with a large number

(if processors, mary processors could be idle waiting to request work from busy processors [Beard,

1990: -1.25-4.28]. As implemrented in this research, idle processors immediately and independently

rquest work from their neighbors.

Heard also implemuented the RING algorithm as a separate process on each processor and used

c,) xt switching betIween the search algorithin and the I.IN(, algorithn) [Beard, 1990: 1.25-1.281].

'Ilis apiwars to he an ineflicient way to perform terrmination and load bdalancing. Both ,of these

,I-18

tasks occur only at very specific points in the algorithm and are easily controlled. Also, context

switching requires calls to the operating system which stop and start the different algorithms.

All this incurs overhead not required if the functions are called from the main algorithm without

context switching.

The DL with load balancing is:

TSP Worker With Load Balancing Design
Receive cost, matrix from host
Perform depth first search on one node to determine initial BEST.cost

Generate starting node in search tree
Distribute children of initial node among all processors
While (not terminated by DONE message)

While (OPEN not EMPTY)
Remove NODE from OPEN queue
Check for RING

Check for WORKREQUIEST message from another processor
Loop until all cities have been checked

Add a city to end of cities in NODE.vector which have been visited
If new city has not been visited in this partial tour

Calculate the cost, (h(n) and f) for new partial tour
If (new NODE.cost < BEST.cost) and (NODE.vector is a tour)

BEST = NODE
Broadcast NEWVBEST to all processors

If (NO)lE.cost < BEST.cost) and (NODE.vector is not a tour)
Insert. new NODE into OPEN

ENI) (Loop until all cities have been checked)
ENI) While (OPEN not EMPTY)
-Send WOR KI EQI EST to other processors

Terminate the prochssors
l;NDI) ILoop, while (not terminated by DONE' message)
Send results to Ilost

ENDTSP II urk r lHith Load IBalanifl! I)rmgn

'I lhi, ;,lg rit hii to ,rtmitatt, the pr,,,rss is as follows:

1(rmnhln•t

If (mvi eil.' n iolde im er is 0)
Initialize 1lie IIlNG ie'ssage
While- (niol all pri .'•sors arer id1l) or (niot all miessages reeived)

heck fo~r \V()Il NKlRI•QI ESI imiesage fom aillot her lr(w's.,r

Send the IllN(;i to n1od, I

I IP

Receive the RING
END while (not all processors are idle) or (not all messages received)

Send the DONE message

END If (my node number is 0)
If (my node number is not 0)

Receive the RING
Modify the numndone and message-count fields to FINISHED
Send RING to next processor
Wait for DONE message

END If (my node number is not)0
END Terminate

The other functions discussed pertain to sharing work between processors. The first function,

send-work-request, sends a %VORKREQUEST message to other processors and waits for their

response. This function also receives aiiy work sent by another processor in response to this message.

The algorithm is:

send. work-request
Send WORKLIEQUEST message to nearest neighbors
If (neighbor has work)

Rýeceive work from neighbor
Insert work into OPEN list

Expand the NODEs
ENI) If (neighbor has work)
If (neighbor has no work)

Send WORKilEQUEST message to all other processors

If (processor has work)
hieceive work from processor
insert work into OPEN list

Expand the NODEs
END If (proctssor has work)

t N I) If (nO'iglhbor has no work)
EN D.so iP-iv L uorkqiqu .

lh1t last finic'ioon, sharwork, is activatedl when a \VOiBKIVEQI 1IST mnssage, is receied.

It oItrriniics if the pr•ow.sor has ereorilih work to share, transmits with Ieither a T o•II , r FALISE

rt.solls,, too thf, rorrosting ior,n, ossor. and,, sni the , w ,rk if aploropriute.

1 20

If A is the parameter which determines if there is enough work to share, Jansen and Sijster-

mrans state that A should be chosen in such a way to keep all the processors busy, but not let

communication overhead dominate the process. If A is too small, a processor could share work and

then immediately have to request work itself. If A is too large, processors could be idle while other

processors have a relatively large OPEN list [Jansen and Sijstermnans, 1989: 273].

Hlow many NODEs to share is determined in two ways. First, if the OPEN list is larger than

20, then 10 NODEs are sent to the requesting processor. Requiring the OPEN list to be larger

than 20 developed from experience in running the algorithm. If the OPEN list is less than 20 but

larger than a predetermined value, then half of the OPEN list is sent. If the OPEN list is smaller

than the predetermined value, no work is shared. The number used to determine how much work

to share and the predetermined value, 13, are problem specific [Cvetanovic and Nofsinger, 1990: 87].

Again•, one goal of this research is to provide guidelines when setting these values.

'The algorithm is:

.sh a1 nito I
I'ecciv, the W\Oi•KIREQUEST message
If (thhere, is enough work to share)

Send work to requesting processor
If (thhere is not enough work to share)

Send tIA LS[: response to re(questing processor

ENDshar(_tork

.4..5 . * V(11 1(1110, .s

\s discusseud in (Chapter II, this research investigates two variations on the A* algorithnm.

"l'his section providvs a more detailed discussioni of thel algorithms and gives the algorithms.

121

4.5.1 IDA* As the example in Chapter 11 shows, the main difference between A* and IDA*

is IDA* performs a limited depth first search on the node selected for expansion by the A* portion

of the algorithm.

To implement the parallel IDA* algorithm, changes were made to the centralized list Worker

algorithm. The first change is to build another queue using the same structures and functions as

for OPEN, but used to store the NODEs generated during the depth first search portion of the

algorithm. The new queue is called ida-q and all the ida-q queue functions are named using the

same name as the OPEN queue functions but add ida_ to the front.

Tihe other change to the CL Worker algorithm is to add the control for the depth first search

to the main algorithm. As long as child nodes do not exceed the cost of the original parent node,

they are kept at that processor for expansion. Child nodes which exceed the cost of the parent are

sent hack to the Control processor for insertion into the OPEN list.

This differs from Korf's method of discarding all generated information except the threshold

cost for the next iteration. This was done for two reasons. First, the algorithm did not have the

problem with running out of memory that Korf experienced. The second reason was this research

hoped to compare the IDA* and the continuous diffusion algorithms. Since neither algorithm is

optimized in t(rmns of execution time . only the number of nodes expanded would be used as a

metric for comparison.

The IDA* Control and Hlost algorithms are the same as the CL Control and Host. The IDA*

WVorker algorithm 'is:

Low L bel IMA * Worker Design
Receivc cost matrix
Wille (not terminated by DONE message)

Semnd WOR K-REQIQ EST muessage to Controller
R(A•elive EX P'AN INODE miessage from (Controller
Inse-rt received VNOI)E into ida_,

\Vhilv (ida-I not ,emply) loop
Expand trodfl on front of ida-(

1-252

Loop until all cities have been checked
Add a city to end of cities which have been visited
If new city has not been visited in this partial tour

Calculate the cost (h(n) and f) for new partial tour
If (new NODE.cost < BEST.cost) and (NODE.vector is a tour)

BEST = NODE

Broadcast NEW-BEST to all processors
If (NODE.cost < BEST.cost) and (NODE.vector is not a tour) and (NODE.cost < ENODE.cost)

Insert new node into ida-q
If (NODE.cost < BEST.cost) and (NODE.vector is not a tour)

Insert new NODE into OPEN
END Loop until all cities have been checked

END While (ida-q not empty) END Loop while (not terminated by DONE message)
Send results to Controller or Host
ENDIDA * Worker Design

4.,5.2 TSP with Levels In trying to compare the IDA* algorithm against the centralized list

or distributed list, the IDA* algorithm is at a disadvantage because of the assignment problem used

to calculatt- the estimated cost to completion f(n). The advantage IDA* has is its ability to perform

depth first searches olnce a node has been sent to the processor for expansion. Using the assignment

problein to calculate f(n) also provides some depth first search, thus negating any advantage IDA*

had.

Io balance out t lie advantage provided by the assignment problem, the CL and I)!, algorithms

wt,re changed to force all solutions to be at, the same level in the search graph. For example, in a

It ,ity 'I SI thle solhtion must have all 10 cities. Normally, only 1 city is added at each level of the

sarch graph. Hlowever, the assignment problemu call. in some cases, provide a solution from any

level il, tle graph. To counteract this, another variable was added to the NOD)E structure telling

whait level in thle graph the state is, '[lhe new structure is

typedef struet {

ilt v•,ttor[V E("O _ -SIZ E+ 1];

irit cost:
ilt link;
lilt) I ' , l

1- 23

If a solution is found but the level did not equal the number of cities, two things happened.

First, the NODE.cost becomes the new global BEST.cost. Second, the variable which counts the

number of NODEs expanded is incremented until the NODE.level equals the number of cities. This

way the solution is always found at the lowest level of the search graph. Now at least the number

of NODEs expanded can be compared between the IDA* and the other algorithms.

In the CL algorithm, only the Worker algorithm is modified to implement the use of the

levels. The Control algorithm still only checks to see if the workers are idle and the OPEN list is

empty before terminating the task. The DL algorithms and the IDA* algorithm have basically the

sami, change as the CL Worker algorithm, so only the CL Worker is shown.

'SP lVorker frith Levels Design
Receive cost matrix

While (not terminated by DONE message)
Senldl WORKI{- REQI TEST message to Controller
Receive EXPANDDNODE message from Controller
Loop until all cities have been checked

Add a city to end of cities which have been visited
If new city has not been visited in this partial tour

(Calculate the cost (h(n) and f(n)) for new partial tour
If (new NODE.cost < BEST.cost) and (NODE.vector is a tour)

Increment NODE.Ievel to number of cities
BEST = NODE
Broadcast NEWBEST to all processors

If (NODE.cost < BEST.cost) and (NODE.vector is not a tour)
Insert new NODE into OPEN

EN I) (Loop until all cities have been checked)
[NI (Loop while (not terminated by DONE message))
Send results to (Controller or Hlost

END TSP l[Iorker writh Lerels Desi qn

4". 5.1 l1sri0!iufed List with Load Balancing and NODE Distribmution Assuming that the se-

quen'til algorithum expamnds the fewest nodes, what. is the best way to have parallel algorithms

0'mmhmlt e the sanme orlering of nodes to be expanded. The centralized list algorithm very closely

e,11mu es the sequelntial algorithm, but its efficiency is limited when scaled to a large number of

jjrcwssors

4-21

While the distributed list with load balancing insured all processors are kept busy until all the

nodes have been examined, it does not mean they are all doing productive work. Saletore defines

wasted work as work performed that to the right of the solution in the state space. For example see

Figure 3-2. He assumes a left to right search of the state space. If the solution is state 1, then any

node expanded to the right of state I is wasted work [Saletore, 1991: 4]. Felten describes redundant

work as expanded nodes which the sequential algorithm would have eventually pruned off [Felten,

1988:1503].

PROCESSOR

0 1 2 3

NODE 124 123 155 178
COST

124 123 156 178

126 124 163 189

128 125 166 192

129 125 167 192

130 127 167 193

130 127 170 193

Figure 4.6. Initial OPEN Lists

4-25

PROCESSOR

0 1 2 3

NODE 126 123 124 178

COST

128 123 155 178

129 124 156 189

130 124 163 192

130 125 166 192

125 167 193

127 167 193

127 170

Figure 4.7. After Node 0 Distributed

1I-26

PROCESSOR

0 1 2 3

NODE 123 124 124 123

COST

126 124 155 178

128 125 156 178

129 125 163 189

130 127 166 192

130 127 167 192

167 193

170 193

Figure 4.8. After Node 1 Distributed

1-27

PROCESSOR

0 1 2 3

SNODE 124 123 163 156
COST

124 123 166 178 _

126 124 167 178

128 125 167 189

129 125 170 192

130 127 192

130 127 193

155 193

Figure 4.9. After Node 2 Distributed

In the sequential or CL alsoritlms, the NODEs would be ordered in non-decreasing cost so the

lowest cost NODE would always be expanded next. However, with DL algorithms each processor

has its owr, local list of nodes to expand and a processor could be expanding a node with a much

higher cost than nodes on its neighbors. For example, Figure 4.6 shows the state of the OPEN lists

at a certain point in time. Processors 0 and 1 have approximately equal cost NODEs at the head

of the list while processors 2 and 3 have much higher cost NODEs. Obviously, we want the lowest

cost nodes to be expanded next.

As discusstd in Chapter II, Cvetanovic and Nofsinger propose a method they called Continu-

ous Diffusion to evenly distribute the lowest cost NODEs. This algorithm periodically distributes a

predetermined number of NODEs from the front of a processor's OPEN list to its nearest neighbors.

Using the initial state of Figure 4.6, Figure 4.7 shows the state of the OPEN lists after processor 0

distributed I NODE to its nearest neighbors, processors 1 and 2. Figure 4.8 shows the state of the

OPEN lists after processor I distributes NODEs. Notice how the front of the OPEN lists are much

more uniform in cost. Figure 4.9 shows that if a processor with high NODE costs distributes, the

NODEs sent are inserted farther down in the OPEN list [Cvetanovic and Nofsinger, 1990: 86-90].

Instead of distributing to its nearest neighbor, Felten suggests randomly distributing the

NODEs [Felten, 1988, 1502]. One problem with this approach is there is no systematic way to

distribute the lowest cost, NODEs to other processors. A processor could never receive distributed

NODEs and have much higher cost. NODEs on its OPEN list.

One prolblem with these approaches is determining how often the processors should distribute

NODIs. (Cvetanovic and Nofsinger define 6 as the numbtr of nodes a processor expands before

distribut ing fro•n its O PEN list. The conflicting goals of minimizing extra search and load imbalanlce

versus communication overhead determine the optimal value for 6 [Cvetanovic and Nofsinger, 1990:

6-9O] .),,etermining giidehlines for setting the value of 6 is one goal of this research.

1-29

Another problem with distributing NODEs is that a large number of NODEs with the same

cost are generated. For example, on one run using 8 processors and 100 cities, every processor had

at least 1000 NODEs with a cost of 134 at the front of the OPEN list. In this situation, it makes

no sense to distribute if all the processors have NODEs with the same cost on OPEN.

To implement the distributed list with load balancing and NODE distribution algorithm, the

distributed list with load balancing algorithm is modified to distribute NODEs. Additional control

is added to the main algorithm to determine when to distribute. Also two more functions are

provided to perform the actual distribution of the NODEs.

The first function, distribute, determines if there is enough work to distribute. This function

has the same concerns about load balancing and communication overhead as the share-work func-

tion. Therefore the same guidelines used for share-work are used in distribute. One difference is

that distribute sends at most 2 NODEs from its OPEN list to any neighbor. The algorithm for

distribute is:

distributc
If (there is enough work to distribute) send NODEs to nearest neighbors
ENDdistribute

The other fuuction, rcceivehdist, receives the distributed NODEs and inserts them into the

OPEN list. The algorithm is:

r(irc-dsli
Receive NO)Es from neighbor
Insert NODEs into OPEN list.
ENDrrcc•U•_dst

Additional variables are needed to help control when to dlistrihute NOI)Es. SC represents

tle huuinnr of nodes expanded since the last time NOI)Es were (list ribited and h is tHie ininMinuuin

4-30

number of nodes a processor must expanded before distributing again. The distributed list with

load balancing and NODE distribution algorithm is:

TSP Worker With Load Balancing and distribution Design
Receive cost matrix from host

Perform depth first search on one node to determine initial BEST.cost
Generate starting node in search tree
Distribute children of initial node among all processors
While (not terminated by DONE message)

While (OPEN not EMPTY)

Remove NODE from OPEN queue
Check for RING
If (SC > 6) then distribute NODEs to nearest neighbors
Check for distributed NODEs from neighbors
Check for WORK-REQUEST message from another processor
Loop until all cities have been checked

Add a city to end of cities in NODE.vector which have been visited
If new city has not been visited in this partial tour

Calculate the cost (h(n) and f) for new partial tour
If (new NODE.cost < BEST.cost) and (NODE.vector is a tour)

BEST = NODE
Broadcast NEW-BEST to all processors

If (NODE.cost < BEST.cost) and (NODE.vector is not a tour)
Insert new NODE into OPEN

END (Loop until all cities have been checked)
END While (OPEN not EMPTY)
Send WORK-REQUEST to other processors
Terminate the processors

END Loop while (not terminated by DONE message)
Send results to Hlost

END TSP Worker With Load Balancing and Distribution Design

4.6 Suonrnary

This chapter described and provided examples of the data structures used by the algorithms.

The high level design of the TSI' algorithm was further developed by adding communication require-

ments and architectutre specific details. Algorithms of the functions used by the main algorithms are

discussed. Changes to the basic parallel TSP algorithm including delayed A* and distributed list,

queues with and withomit load balancing are discussed and the algorithms provided and explained.

4-31

Also discussed were two variations to the basic A* algorithm. The first algorithm, IDA*,

performed a limited depth first search in conjunction with the A* algorithm. The continuous

diffusion algorithm attempts to insure the nodes being expanded are not wasted work by exchanging

NODEs between processors.

The next chapter provides and discusses the results of all the aigorithms.

4-32

V. Results

5.0.1 Introduction The previous two chapters presented the design of the sequential TSP

using the A* algorithm. Also presented were parallel algorithms of the TSP using A* including

centralized list, distributed list with and without load balancing, IDA*, and continuous diffusion.

The CL algorithm was developed first and then tested. While this algorithm is efficient for a small

number of processors, the other algorithms were developed to reduce the amount of idle time on

the processors or to reduce the number of states explored by the algorithm.

The purpose of this chapter is to discuss the data gathered M4hile executing these algorithms.

Section 5.2 discusses the metrics used to gather and evaluate the data during testing of the algo-

rithins. Also provided are the test cases against which the programs were run. Section 5.3 discusses

how to read the test results. Only the results of the programs are presented in this chapter. The

evaluation and interpretation of the results is presented in Chapter VI.

5. I Metrics

This section is a further discussion of the metrics presented in Chapter III and provides a

detailed explanation of the metrics used in this research.

When gathering data on a program, it is initially difficult deciding how much and of what

type of data to collect. Too much data can swamp someone trying to evaluate it and they might

iniss something of importance. Too little data and something of importance might not be reported.

Also, the amount of data data collected can have an adverse impact on the performance of the

program. While there was a basic core set of parameters that had to be measured only once, the

frequency of other parameters was determined on a trial and error basis. The first few runs of the

centralized list program produced too much information. A relatively small program took minutes

io run compared to the seconds it. took to run after the parameters were tu (Id.

The specific parameters used to evaluate the TSP A* programs arte listed below:

5-1

"* Total program run time - The total execution time of the program, from initiation to ter-

mination.

"* Initiation time - Time spent loading the cost data and initializing the variables.

"* Search time - The time spent searching for the solution. This includes communication and

idle time. It is calculated by

Searchtirme = Totaltirne - Initializingtime

"* Processor efficiency - The ratio of the time a processor was in the search portion of the

program versus the total execution time. The sea.ch portion of the algorithm does riot

include any idle or communication time.

"* Average processor efficiency -- The average of the processor efficiencies. One or two processors

could have a low efficiency, but the overall efficiency of the program could still he high.

"• States expanded per processor - The number of states expanded per processor. This metric

can indicate idle time or inefficiencies in distributing the work.

"* Total states expanded - The total number of states expanded. This is one of the best metrics

for comparing search algorithms.

Other paranmeters that are not used to evaluate the algorithms but were use(d for troubleshoot-

ing purposes were:

"* NEWBEST - A printed message indicating a new global best solution was found and by

which processor.

"* Queue size A printed message showing the size of the OPEN list on the Worker's or the

centralized OPEN list on the Controller. Also printed the cost, of the next NODE to be

5-2

expanded. This parameter was very helpful in determining the effectiveness of the prune

function.
I

These parameters also provided a feel of how the programs were running. Several times
I

problems were detected just by the program not acting as it had in the past.

The IDA* algorithm had the following unique parameters:

"* IDANEWBEST - A printed message indicating a new global best solution was found

during the IDA* portion of the algorithm and by which processor.

"* IDA-expanded - Number of states expanded during the IDA* portion of the algorithm.

Parameters unique to the distributed list programs are:

"* Distributed iThe number of times a processor distributed work to its nearest neighbors

"* Asked-for-work The number of times a processor became idle and requested work from

another processor.

"* Share - The variable used to adjust when a processor had enough work to share with another

processor. This variable was used in both the "share-work" and the "distribute" functions.

"* Lambda - The variable used to determine when a processor should distribute NODEs to its

nearest neighbors.

.5.2 Testing

The main measure of an algorithm is that it produces the correct results. As the example

in Chapter I showed, even relatively small problems can have a prohibitively large number of

combinations which iutist be checked. The method used to validate the program restilts was to run

the program and use the results as the "best" solution. With this solution as the bound, problems

5-3

with 4, 10, and 22 cities were then solved by hand. For example, Figure 5.1 shows the configuration

for the 4 city input. Figure 5.2 shows the search graph generated by hand to solve this problem.

64

2

6 903

665

3• • 63

85

Figure 5.1. TSP for 4 Cities using File n4a

While the 4 and 10 city problems were relatively easy to solve, the 22 city problem was

selected because it was the about the largest problem solvable by hand in a reasonable amount of

time. Even having the best, bound possible, i. e. , the solution, this problem took over 4 hours to

Solve.

In each case, the solution generated by the program and the solution generated by hand had

the same best cost. Since it is impossible to check problems of any size by hand and the same test

cases were run using different algorithms and parameters, the assumption is made that the correct

answer is produced if it, matches the answer given by different algorithms running the same test

caSe.

5-1

vector

cost

1-2 1 -4 1-4321.4-

95 1-9-96 91 81 131

1-2-3-4 1412121

1800
00

1-2-4-3 1-3-24

192 161 14-3-2-1

0 0 (195

1-34-2-1 1-4-2-3-1
178 146

Figure 5.2. Search (raph for 4 Cities using File n4a

5 -.5

The distributed list with load balancing and the continuous diffusion algorithms required

special testing because they have parameters which must be tunied for each application. Therefore

there are several different runs of the same program with the parameters changed. A listing of the

test case inputs and solutions for all the problems are provided in Appendix C

Each test case was run using all the algorithms described in Chapter IV on 2, 4, 8, 16, and 32

processors. Since the Air Force Institute of Technology (AFIT) has only an 8 processor hypercube,

another hypercube with 64 processors was located at Oak Ridge National Laboratory, Oakridge,

TN. While this hypercube had enough processors for the tests, other problems arose. First, the

network used to connect to the Oakridge hypercube, the Defense Data Network (DDN), had routing

problems. The software routines to route the telephone connections had been recently modified

and no reliable path between AFIT anl Oakridge could be found. Response times of up to 10

ninutes for each keystroke were noted. This problem was finally partially solved by logging into

a computer at Phillips Lab in Albuquerque, NM theji logging into the Oakridge hypercube. This

produced a response time of about 2 seconds which was acceptable, but the computer at Phillips

Lab was down for maintenance frequently.

Another problem with the Oakridge hypercube was the operating system of the iPSC/2 is not

very robust and can "crash" quite easily. When working with the AFIT iPSC/2, the status of the

comiputer can be monitored by watching the status lights on the front of the computer. Also, the

system administrator, Richard Norris, was very helpful in determining the cause of the crash and

ways to fix it.. Since the iPSC/2 at Oakridge was remote, the status lights could not be monitored.

•5, Testl Results

This section provides a listing of the data results and what each table measured. The tables

along with graphs of data from the tables are provided in Appendix 1B.

5-(;

"* Appendix C -- List the test cases and the solution to each one. The solution is the order in

which the cities are visited and the associated cost.

"* TABLE BI -- Centralized list pirogram test results, including execution time, states expanded,

and average processor efficiency. The entry for one processor is the data for the sequential

algorithm.

"* TABLE B2 -Distributed list without load balancing program test results, including execu-

tion time, states expanded, processor efficiency, and average processor efficiency.

"* 'lABLE 33 l)istributed list with load balancing program test results, including execution

time, states expanded, and average processor efficiency. Also included are the number of

times the processor asked for work.

"* 'TM\BLEs B4 and 15 l)istributed list with load balancing and distributing program test

results. including exectiton time, states expanded, processor efficiency, and average processor

efficiency. Also Included are the number of times the processor asked for work and distributed

NODEs to its nearest neighbors.

* TAB HEEs H6 aid 17 Distributed list, with load balancing program test. results, including

execution time, states expanded, processor efficiency, and average processor efficiency. Also

included are the number of times the processor asked for work and (list ributed NODEs to its

nearest neighbors. This table differs from TABLE 133 in that it. shows the optimal range for

the share variable.

"* 'IAlBl, Es BS and B) l)ist ibuted list with load balancinig and (list ributi ng program test

results, including execu7 :nm time, states expanded, processor efficiency, and average processor

effi,-iency. Also inclhtded are the number of times the processor asked for work and (list ributed

NO(I)Es to its hearest neighbors. This table differs from TABIL Es l14 and 15 in t hat it, shows

lie, (•)timal range for the(distrihiute variable.

5- 7

"* TABLE BIO -- IDA* programn test results, including execution timne, states expanded, and

average processor efticiencv. Also included are the number of states expanded during the

IDA* portion of the programn.

"* TAB3LE B131- Level program test results, including execution time, st~ates expanded, and

average processor efficiency. Also includedl are the number of states expanded during the level

portion of the program.

5.1 Summaury

Thiiis chiapter provided thle results fromn all the algorithms developed and tested. The met rics

used to evaluiate, and conipare the algorithmns are also dliscuissed. Due to limitations in time and

tlhe adIverse im pact, on progran execuition, dlat a on all possible met rics wvere not collect ed.

Theo stqiitntlal versýion of the TSP using A* was, shown to return the correct results oii known

test cases and1(prob~lemiis of simall enough size to be evaluated byv hand. Therefore, the results of

lthe ser iitnt ia I progra ii are as.sumred correct. .No parallel version of the algorithmns ret urned a cost,

di 1'erewi t han thle seq uentijal programn.

The itnext chialter eva I at ts tilte resulIts from thle different. algori thins. C'oncl usion about the

elfileicro of thre algorithInns are drawin and reconimenlat ioie, for fuirt her Nvork is presented.

VI. Conclusions and Recommendations for Further Work

6.1 Introduction

Chapter I describes the nature of NP-complete problems and provides an example of the

exponential nature of the time and polynomial nature of the space requirements of these problems.

Also described are some of the physical constraints and limits on the capabilities of sequential

computers. These limitations coupled with the increasing power and decreasing cost per million

instruction per second (MIPS) have led to the use of parallel computers for large, complex problems.

Chapter II provides the background for this research investigation. A more detailed definition

of NP-complete is given along with the relationship between NP-complete, P-time, NP-time, P-

space, and NP-space. Parallel computers in general and tile hypercube specifically are discussed.

Some of the problems related to parallel programming of search algorithms are listed and briefly

explained. Finally, different search techniques are described. Which technique or combination of

techniques to use is problem specific and Table 2.2 provides a general listing of the strengths and

weakness of each algorithm.

More specific background information relating to metrics used to evaluate parallel algorithms

and specifically parallel search techniques is discussed in Chapter III. Metrics such as processor idle

time, program run time, and number of states expanded were chosen for their ability to measure

and show the relative efficiency of the programs. The assignment problem and how it relates to

the implementation of the traveling salesman problem (TSIP) is discussed and an example of its use

given. Finally, the high level design of the parallel A* TSP algorithm using a centralized list. (CL)

is discussed. Pseudo code for the algorithm is provided along with a discussion of each part of the

algorithm.

(Chapter IV discusses the low level design of tile parallel A* TSP algorithms. Hligh con-

mnunication overhead aud(poor scalabilit y dme to the master processor becoming a communication

bottleneck in the CL version of tHie TSP algoriltmii led to the development of distributed list (I)l,)

versions of the parallel TSP algorithm. When to share or distribute work are the main areas of

study for these algorithms. Also, an IDA* version of the TSP algorithm is developed. For each of

these algorithms, the pseudo code is given and a detailed discussion of the algorithm is provided.

Chapter V presents the r(ults from each algorithm, including which metrics are used for

evaluating the use of the synthesized program and the testing process. A listing and explanation

of how the data is displayed is also provided. Interpretation of the results is left for this chapter.

This chapter has two main objectives. First, the dnta from each of the algorithms is inter-

preted and compared to the other algorithms. Specifically, the three main metrics of program run

time, states expanded, and processor idle time, are compared and explanations for the differences

are provided. Graphs of applicable data are provided to substantiate the explanations for the

differences among the algorithms.

During any time limited research effort, it is never possible to explore all avenues of interest

or problem areas. Therefore, the other objective of this chapter is to provide recommendations for

further study.

6.2 h1lcrprelalion of the Resills

In this section, the results from the four main algorithms investigated by this research, are

discussed. These algorithms are:

"* Centralized list A* TSP

"* D)istriburted list with no load balancing A* TS P

"* D)istributed list with load balancing A* TSiP

"* D)istributed list. with load balancing and work dist ribution A* TSP

AbderlrahInan andl Mudge [AbderlraInmma anhd Mudge, 1988: 1497], Quinn [Quinn, 1990: 385-

38711 and ofhers have shown , the master pro•essor in a worker/nianager functional decompositfion

G-52

using a centralized list can become a communications bottleneck. They also state that after a

certain number of processors, increasing the number of processors actually increases the execution

time due to this bottleneck. For the Intel iPSC/2 hypercube, the "magic" number of processors is

about 16 and this is validated by this research. Therefore, tile algorithms are compared twice, once

using 16 or less processors, called small scale computers, and once using more than 16 processors,

called large scale computers.

6.2.1 Preliminary Depth First Search (DFS) The high level design for the Control CL ver-

sion of the parallel TSP algorithm performs an initial DFS of one node. This is done by traversing

all cities in numerical order. For example, a 10 city problem initial solution is I - 2 - 3 - 4 - 5 -

6 - 7 - 8 - 9 - 10 - 1. This arbitrary tour provides an initial best solution used to bound the search

process. Even for the 100 city problem, this DFS took less than 1 millisecond.

Initially, using the DFS appeared to have no effect on the time of the search or the number of

states expanded. However, it was found that on some problems the run time and number of states

expanded were greatly reduced. For example, the 65 city problem in file "n65a" expands 1697

states and takes .1153 seconds to run using the DFS on 4 processors. Without the DFS, it expands

3509 states in 8653 seconds. Obviously, the possibility of wasting less than 1 millisecond is worth

the large gains the DFS might provide. Therefore, DFS is used with all algorithms developed for

this research.

Another variation not investigated by this research is to have each processor perform a differ-

eit I)iS and use the best solution as the initial bound. Also, each processor could perform several

depth first searches before continuing on with program execution. The tradeoff between time spent

in I)IFS versus the time saved by finding a "good" initial bound need to be investigated.

6.2.2 E!,aluaJ.ion of the Algorithms In evaluating any algorithm, two main metrics are use(l.

F irst. aim algorithim inmst be effective in that it, provides the correct answer. Secondly, aim algorithm

6-3

is evaluated as to its efficiency in both time and memory requirements. This research does not

investigate methods to improve or compare memory usage.

The three main efficiency metrics used in this research to evaluate an algorithm's execution

time efficiency are total execution time, number of states expanded, and processor idle time. Of

these, the most important is execution time. For non-research problems, the bottom line is providing

a correct solution in the shortest time possible, or at least in an acceptable time. So the overall

goal is to find algorithms which perform tasks quicker. While there is normally a direct correlation

between the number of states expanded, processor idle time, and the execution time of a search

algorithm, states expanded and idle time are still useful metrics. The number of states expanded

can be used to compare different algorithms or the same algorithm run on different computers.

Processor idle time is helpful in showing where a parallel algorithm is inefficient and possibly how

to improve it. These metrics are the basis for comparing the algorithms.

For all algorithms discussed, four different problem sizes are run. These four problems are

representative of the different size problems likely to be encountered and contain 22, 55, 65, and

100 cities. l)escriptions of the problems along with the cost matrices and problem solutions are in

Appendix C. Results such as execution time, number of states expanded and processor efficiency

are provided in Appendix B. Some of the graphs of data are also provided in the appropriate

sections for ease in understanding the discussion.

6.2.3 Small Scale Parallel Computers This section compares the different algorithms using

16 or less processors on an Intel iPSC/2 hypercube. Each of the four algorithms are discussed and

compared to the others.

6.2... 1 Centralized List Algorithm (CL) The first. thing to notice is that for all cases,

the (TI. algorithm outperformed all others in both execution time and in the number of states

expan(led. This is the same results obtained by Abderlrahrnan anrd Muidge [Abderlrahman and

6-4

Mudge, 1988: 1497], Quinn [Quinn, 1990: 385-387] and many others. This is because in small

scale computers, the master processor does not become a communication bottleneck. This allows

for relatively efficient load balancing of the processors and reduces the processor idle time. Also,

since the OPEN list is kept oil a single processor, the order in which the states are expanded closely

resembles the sequential algorithm. The graphs in Appendix B show the number of states expanded

per processor is almost a horizontal line for the CL algorithm. As discussed in Chapter Ill, this

means relatively few states not expanded by the sequential algorithm are expanded resulting in

little wasted work.

6.2.3.2 Distributed List With No Load Balancing (DLNLB) The distributed list with

no load balancing (DLNLB) algorithm performed the worst of all the algorithms in relation to

execution time and number of states expanded. Again this conforms with what others have found

[Abderlrahmnan and lMudge. 1988: 1497] [Quinn, 1990: 385-387] [Felten,1988:1301] [Ilayes and

Mudge, 1989: 1839] [Cvetanovic and Nofsinger, 1990: 86-89]. If it was known along which path a

solution could be found, only that path would be explored. But since this is not. a greedy algorithm,

all paths must be explored implicitly or explicitly. Also, it can not be determined which path will

generate the most work, so there is no way to evenly allocate the work load at the beginning of

the algorithm. Because the DLNLB algorithm only divides the work once at the beginning of the

algorithm and never balances the load again, once a processor finishes its assigned work, it sits idle

until all other processors finish. Therefore, the I)LNLB execution time is the time of the longest

path to a solution or bound of the search.

In a I)LNLIB algorithm, the only way speedup can occur is by dividing the work among

enough processors so a "good" boundary solution is quickly found. This allows the algorithm to

prune or eliminate nuimnerous search paths. As the figures in Appendix B show, there are initial

drops in the execution times, but then the times are almost constant. Adding more processors does

not, noticeaHlly decrease the execution time because the run time limit is the time of the longest

6-5

solution or bound. Adding more processors to solve the problem reaches the longest path quicker,

but do not help decrease the time to explore the path.

6.2.3.3 Distrzbuted List With Load Balancing (DLLB) As discussed in Chapter lI,

one way to reduce the algorithm execution time when using a distributed list algorithm is to allow

processors to request work from another processor when they become idle. One problem with this

approach is the overhead associated with determining if a processor has enough work to share and

the communication to pass work between processors. These problems are discussed in greater detail

in section 6.2.5.

Figures B1, B2, B3, and B4 show the problem size has a real impact on the execution time of

the DLLB. For example, the 22 city problem actually increased in execution time going from 2 to

4 processors then decreased again from 4 to 8 processors. The 22 city problem at times ran slower

than the DL_-NLIB algorithln and never dramatically decreased the execution time. The 55 city

problem also ran approximately the same amount of time as the DLNLB algorithm. But looking

at the 65 and 100 city problems, you notice dramatic decreases in execution times. For example in

the 100 city problem using 4 processors, the times decreased from 33504 to 20117 seconds. This is

a decrease of 40 ',/,!

This discrepancy between small and large sized problems is explained by the communication

and task granularities of the different problems. As stated in Chapter II, granularity is a measure of

relative size or frequency of an event or computation. In the small problems, the amount of overhead

associated with sharing work far outweighs the gain provided by not having idle processors. The

problems are so small that it is more efficient to solve them using the CL algorithm or even a single

processor.

The two large, problems are more representative of the size of problems that would be solved

using a parallel Complter. For these problems, the [)LLB algorithm performs better than the

DLNLB algorithm hut, not as good as the CL algorithm. The idle time associated with the

6-6

DLNLB algorithm is greatly reduced, but the overhead associated with load balancing still makes

this algorithm less efficient than the CL algorithm. The number of states expanded by this algorithm

is also much higher than for the CL algorithm. This is due to each processor having its own local

OPEN list. This means only a local, not global, best state is selected for expansion resulting in

wasted work.

6.2.3.4 Distributed List with Load Balancing and Distribution (DLDIST) The DL-DIST

algorithm is identical to the DLLB algorithm with the addition of a function to distribute work

from its OPEN list to its nearest neighbors. This is an attempt to emulate the global OPEN

list of the CL algorithm and reduce the number of states expanded. For the small problems, the

DLI)IST performance is better than the DLIB algorithm. For the larger problems, the perfor-

mance is mixed. In the 65 city problem, both the execution times and number of states expanded

are better for the DI._DIST algorithm than the DLLB algorithm. However, in the 100 city prob-

lem, the DLLB algorithm executes in less time until about 7 processors are used. Using between

7 and 16 processors the DLDIST algorithm performs better. In both cases, the differences are not

very great. Again, the DLLB and DLDIST algorithms are discussed in section 6.2.5.

6.2.3.5 Small Scale Parallel Computer Summary For the small scale computer, the

('I, algorithm performed better than the other algorithms. However, when using 8 processors or

more, the master processor begins to become a bottleneck and the execution time becomes almost

constant. Increasing the number of processors does not decrease the execution time. The DL-NLB

algorithm performed the worst of all the algorithms due to load imbalances resulting in processor

idle time.. Both the DLLB and DLDIST algorithms did not perform as well as the CL algorithm,

but at 16 processors the execution time curves are beginning to approach the CL execution time

curve. When using either the DLI1,1 or I)_DIST algorithms, adding processor greatly decreased

the execution times. The I)LLB and DLI-)IST algorithms are discussed in more detail in section

6.2.5.

6-7

6.2.4 Large Scale Parallel Computers This section discusses the behavior and performance

of the algorithms using 16 or mort. processors to solve the problems. Because of hardware problems

with the Oak Ridge Nation Laboratory's iPSC/2, not all algorithms were able to be run using 32

processors for all problem sizes. However, enough data was collected to show the overall trends of

each algorithm.

6.2.4.1 Centralized List As discussed earlier, the CL algorithm's main deficiency is

that the master processor becomes a communications bottleneck forcing slave processors to remain

idle waiting for new states to expand. This trend is painfully obvious when using more than 16

processors. The execution time curves for all problem sizes had already begun to flatten out when

using between 8 to 16 processors. Increasing the number of processors provided no noticeable

decrease in the execution times for the problems, and in the case of 100 cities the execution time

began to increase.

One important factor to note when comparing the different algorithms is the processor ef-

ficiency versus the number of states expandcd. The CL algorithm always expanded the fewest,

number of states, but its efficiency really drops off as more processors are used to solve the prob-

lem. 1it distributed list algorithms expand many more states than the CL algorithm and their

processor efficiencies are relatively high. For example, in the 100 city problem, the CL algorithm's

effiliency decreases from 0.938 to 0.422 when using 4 and 16 processors respectively. However, the

DLLDIST algorithm's efficiency only drops from 0.997 to 0.988. Since the CL algorithm's execution

time is always less than the I)LDIST algorithm's, this implies one of the most important factors

for reducing search algorithnli execution time is not processor efficiency, but the heuristic used to

(letermine the order in which the search graph is explored!

6.2-4.2 Distributtd List With No Load Balancing For the saiie reasons discussed in

the small scale computer section. the)IL_N ,13 algorithm execution time curve is almost a constant

when using more than IG processors. Like the ('L algorithm, increasing the number of processors

6i-,'

does not decrease the execution time. Also like the CL algorithm, the 100 city problem execution

time increased when going from 16 to 32 processors. The minor changes required to add load

balancing to this algorithm are definitely worth the cost.

6.2.4.3 Distributed List With Load Balancing and Distribution This section discusses

both the DLLB and DL.DIST algorithms. A comparison of these algorithms is provided in section

6.2.5. While only the 100 city and 65 city DLLB problems were able to be run using more than

16 processors, the trends are obvious. The executioai time curves had already begun to flatten

out when using less than 16 processors. When using more than 16 processors this trend continues

and the curves flatten even more. Processor idle time has increased due to the overhead and

communication associated with load balancing. As the number of processors increases, tile more

likely it is for a processor to request work from an idle processor or one that does not have enough

work to share. However, since the CL algorithm execution times have become almost constant, the

DLLB and DLDIST algorithms' execution times are approaching the CL times. For the 100 city

problem, the difference between the DLDIST and CL algorithm is only 264 seconds or 9%. This

much variance in execution time was noted when running the exact same problem repeatedly.

The number of states expanded by the DLLB and DLDIST algorithms increases dramatically

with the number of processors used. This is due to the OPEN list being local to each processor and

not global. As discussed in Chapter III, this results in expanding states which are not expanded

when using a global OPEN list. This tradeoff of wasted work versus reducing the execution time is

acceptable, especially since the distributed list algorithms are scalable to large numbers of processor.

6.2.4.4 Algorithm Summary For all algorithms and problem sizes, the CL algorithm

still has the shortest execution time. However, as the number of processors increases above 16, the

DLLB and DLDIST algorithms' execution times continue to decrease while the CII execution time

is almost constant. At approximately 32 processors the execution times of the CL and both DL

algorithms meet. After this point, the DL algorithms should be more efficient, but no computer was

6-9

available to validate the continuation of the algorithm execution time curves. Using the number of

states expanded as the metric, the CL algorithm again is the best.

6.2.5 C7ornparison of DLB and DLDIST Algorithms Many articles discussed distributed

list load balancing and distributing nodes from the OPEN list in an attempt to emulate a global list.

However, the only guidance provided by any article was to state that determining when and how

to balance the load was very difficult and each algorithm or problem was unique [Abderlrahman

and Mudge, 1988: 1495] [Quinn, 1990: 385-387] [Felten,1988:1496] [Hayes and Mudge, 1989: 1836]

[Cvetanovic and Nofsinger, 1988: 86-89] This section discusses the differences between the DL_LB

and DIDIST algorithms and provides some general guidelines and observations about when and

how to balance the work load when using a distributed list algorithm. Most of the data gathered

was using 16 or less processors because of the hardware problems with the Oak Ridge National

Laboratory's iPSC/2 hypercube.

Since there are two variations of the algorithm investigated by this research, there are 4

combinations of the variations. The combinations are:

"* Distrib•uted list with load balancing (DLLB) - The term share is used to describe passing

work from one processor to another for the purpose of balancing the work loads. Sharing

work is only initiated when a processor is idle.

"* Distributed list with distribution but no load balancing (I)LIB) - The term distribute is

used to describe passing work from one processor to another for the purpose of emulating a

global OPEN list.. Distributing work can be done any time during program execution.

"* Distributed list with load balancing and distribution (DLDIST) -- This algorithm uses both

load balancing and distribution. This algorithnm also encompasses the fourth variation of

using distribuition and load balancing.

6-10

The distributed list with distribution and no load balancing is very similar to the distributed

list with no load balancing. The differences are examined when the DLLB and DLDIST algorithms

are discussed.

6.2.5.1 Load Balancing As stated in Chapter IV, there are two aspects to sharing

work. First, a processor must be idle and second, another processor must have enough work to

share. The variable share is used to determine the number of nodes required on a processor's OPEN

list before it can share work with another processor. As stated in Chapter II, there are tradeoffs

to consider when determining when and how to share work. Sharing work too often and the

communication overhead negates any advantage from sharing; don't share enough and processors

remain idle!

Looking at the data in Appendix B Tables B6 and B7, the first thing to observe is the two

smaller problems have the same share variable and the two larger problems have the same share

variable. This indicates the problem size has an effect on how often to share. The larger problems

require more tine to determine if the next city added to the partial tour is already in the path, are

the cities now a tour, and calculate the estimated cost to complete the tour. This means there is a

relatively large amount of computations required for the larger problems. Therefore, once work is

shared, it takes a longer period of time before the large problems would request work again. This

allows the share variable to be set smaller and optimize the computation to load balancing overhead

ratio. When the share variable is too small, a processor sends work to a requesting processor and

then quickly finishes its own remaining work. Now the processor is idle and must request work.

This cycle continues with relatively few states being expanded and a relatively large time spent

in load balancing. This is similar to thrashing where a processor is constantly requesting data

from secondary nemnory and little computation is performed. Share thrashing occurs when load

balancing overhead dominates the computations performed to solve the problem.

6- 11

Another factor effecting the share variable is the number of children produced by a problem.

In this research, the smaller problems produced fewer children. For example, the 20 city problem

produces at most 20 children while the 100 city problem produces at most 100 children. This

means once a large problem receives work, it is more likely to produce children and need not

request additional work immediately. Problems which generate small amounts of additional work

need to share less frequently, but share larger blocks of work. If a problem generates few children,

share thrashing could occur if the share variable is set too low.

Especially for the large problems, there is a large decrease in the execution times between the

optimal share value and the next lower value. For example, the 100 city problem has an execution

time of 27,838 seconds for a share value of 3 and 9,210 seconds for a share value of 4. When the

share value was set at 2, both the 100 and 65 city problems were terminated after running 24 hours

alld did not appear close to finishing. The additional overhead of load balancing should not account

for such a large increase in execution times, especially since the problems require relatively large

computation time and generate a large number of children. What was determined was that while

the computation time required to expand a state remained approximately constant, the number of

children generated did not. This is due to two reasons. First, as Figure 3-10 shows, the number

of children generated decreases at each level of the search tree due to reduced combinations of

solutions available. The second reason is that as the algorithms progress, the cost used to bound

the solutions becomes closer to the optimal solution. This increasingly eliminates children which

are generated from being placed on the OPEN list because their estimated cost to completion is

already higher than the current bcst solution. After the bounding cost gets relatively close to the

optimal cost. the large problem behaves like a small problem as far as child generation is concerned.

This is why the optimal share variables are so close for both the large and small problems and the

execution times vary so drastically with a small change in the share value.

6-12

This situation where the large problems act like small problems lends itself to a graduating

scale approach to selecting the share variable. At the beginning of the program, the share variable

can be relatively low with the value increasing as the bounding cost approaches the optimal cost.

When to increase the share value could be determined by the percent of possible children actually

generated for expansion. The higher the percent, the lower the share value.

A third factor effecting the choice of a share variable is the processor computational speed. As

the ,ompuW-itional speed increases, work should be shared less often. This is because the processors

can quickly expand the states. If the share variable is too low, share thrashing occurs. An example

of this is comparing the iPSC/2 hypercube to the i860 hypercube using identical problem sizes,

algorithms, and share values. As explained in section 6.4, the computational speed is approximately

1H times faster for the ;860. Using 8 processors, a share value of 7 and the 55 city problem, the

iFSC/2 requested work 243 times with a run time of 1103 seconds while the i860 requested work

687 times with a run time of 172 seconds. However, when the i860 share value was increased to

10, the run time decreased to 141 seconds and work requests dropped to 350. While this is not

('conclusive proof, the trend held for all algorithms and share values tested.

6.2.5.2 Distribution The idea of distributing the workload to achieve greater efficiency

is discussed by Felten [Feldman, 1989: 15-0-1504] Cvetanovic and Nofsinger [Cvetanovic and Nof-

singer, 1990: 82-90] and many others. Again, the only guidance provided was that each problem is

rimlpie and that the optimal distribute variable must be found by trial and error.

hIi this research study, the distribute variable determines the frequency of a processor sending

work to its nearest neighbors. A counter is increment(ed after every expansion of a state. When

hlie, counter equals the distribute variable, work is distributed. Another condition required for

dist ribut ion is that the number of nodes on the OPEN list be equal to or greater than the share

vAlue of the variable. This enisurres ý, processor does not dist ributie work and then have to reqiest

work.

6- 1 3

The DiDIST algorithm has all the advantages and disadvantages of the i)LLB algorithm

with the addition of the distributing of work. In these algorithms the I)LLH algorithm had the

most impact on reducing execution time. The DI)lIST algorithm only added a relatively small

amnount to the reduction in run times. For example, the execution tine for the 65 city problem

using 16 processors and the DLNLB algorithm decreased from 13762 seconds to 8901 seconds when

the)LIB3 algorithm was used. This is a decrease of 35(4! However, using distributed list with no

load balancing and distribution, the run time only dcreased to [2984 seconds, a decrease of about

5'A. This shows the predominate factor in reducing run tinme is balancinag the work load to keep all

tle processors busy.

One goal of distributing work is to more closely emulate the global OPEN list of the CL

algorithm. ',he data in Figures B5, B16, B7, and 18 show the I)LDIST algorithm consistently

expands fewer states than the other two distributed list algorithms. Also, the data in Tables 138

and 139 shows that the number of states expanded is inversely proportional to the frequency of work

being (list ributed. This shows that by distributing work more frequently, the closer the algorithm

emulhates tli global OPEN list. Unfortunately, tihe added distributions also incur additional over-

head to process and send the work to other processors. So while tie goal of more closely emulating

the global OPEIN list was met. the additional overhead requires tradeoffs between the benefits of

d(ist ributing work and tlihe overhead incurred.

Because the load balancing is the dominante factor in reducing program execution tinme, few

lh,,rvations can be made about the distribute variable. First if t1l'e distribute variable is too low,

a pr,,blemt similar to share thrashing occurred. Little coruputation was getting done becauIse, all the

tine, was spemt in (listribnting work. The distribute thrashing problom is related to the amount, of

-oniuit aion reqmired to expand the states. Like the share variable, tlihe more coniputation required

to expatd t1it' states, the more frequently work can be distriloited.

One problem not mentioned in the literature is not allowing work to be distributed if the cost

of the nodes being distributed is constantly the same. For example, using 8 processors and the 100

city problem, the DLDIST algorithm reaches a point where there are approximately 17,000 nodes

onl all OPEN lists. Of these 17,000 nodes, approximately 90% have a cost of 134. Therefore, it

makes no sense to distribute nodes when all the OPEN lists have the same cost. This problem is

reduced by having a counter keep track of the number of times work was distributed with the same

cost. If the counter reaches a predetermined number, no work is distributed until the cost of the

node on the front of the OPEN list changes. For this research, the number was set at app)roximately

50. This number was selected to allow nodes of the same cost to be spread among all the processors,

but keep nodes from being unnecessarily distributed. While the effect on the algorithm was not

great, it did reduce the 100 city problem using 8 '•r-,,essor: from 13867 seconds run time with

5862 states expanded to 13011 seconds run time and 5844 states expanded. This addition to the

DLDIST algoritfhm allows probleits which u ,-noeiite large numbers of children with the same cost

to efficiently distribute work.

Having a large number of nodes with the same cost diminishes the expected reduction in the

program run tilile.

For example, compare the 65 city problem which has few nodes with the same cost and the

100 city problem which has many nodes with the same cost. The most same cost nodes observed

when using 8 processors in the 65 city problem was approximately 1200 nodes with a cost of 137

while the 100 city problenl 17,000 nodes with a cost of 134. In the 65 city problem, the (difference

in execution times between the DLDIST and DLLB algorithms continues to increase as more

processors are added. In contrast the. when using the 100 city problem, the i)lLiB algorithm

never clearly outperforms the DLDIST algorithm. When using large numbers of processors, the

D[IDIST and DI-I,_1 algorithmnms have almost identical execution times for large nimmibers of samne

(,slt i,,d's, 'his is because by using more processors, the programn quickly finds near optimal

615

solutions and prunes most branches of the search tree. Since there are numerous nodes with the

same cost which are within 1% of the optimal solution, this means the nodes left to expand are

not distributed. Therefore, the function which keeps work from being distributed when the nodes

have the same cost forces the DL-DIST algorithm to emulate the DLLB algorithm as the number

of nodes with the same cost increases.

6.3 IDA* Versus Centralized List

One goal of this research is to compare the IDA* algorithm with the DLDIST algorithm. For

all problem sizes, this implementation of the IDA* algorithm outperformed the DLDIST algorithm

in both execution time and states expanded. This is because the IDA* algorithm is very similar to

the CL algorithm and states are expanded in approximately the same order as the CL algorithm.

As discussed previously, this is one of the main factors in reducing algorithm execution time and

number of states expanded. Since the IDA* algorithm more closely resembled the CL algorithm,

it is compared to it. instead of the DLDIST algorithm.

Because of the IDA* algorithm implementation, only the number of states expanded can be

comparedl to other algorithms. The IDA* algorithm consistently expanded more states than the

CL algorithm. This is because the CL ,,)rithm uses the assignment problem as the function

to estimate the remaining cost to completion for that state. As discussed in Chapter III, the

assignment problem can provide a solution t~o the search problem. This is a form of depth first

search that the li)A* implementation does not exploit. To balance the algorithms for comparison

purpose, the C(L algorithm is required to expand all levels of the search graph. This new CL

algorithm is called "level".

Comparing the level and IDA* algorithms produces mixed results. While neither algorithm

always expan(ds the felwest number of states, the IDA* does constantly expand less. For example,

when using 65 cities, thle IDA* expanded as much as 9649 fewer states or 480'X less! Whether this

6-16

is due to the inherent superiority of the IDA* algorithm or caused by the implementations of the

two algorithms could not be determined in this research. Other factors which could effect which

algorithm to use and could be investigated include memory requirements for storing the OPEN list

and the cost of maintaining an OPEN list versus the cost of repeatedly generating and expanding

the states. More study using different implementations of the IDA* and DLDIST algorithms is

required to determine which algorithm is actually better.

6.4 Guidelines for Distributed Memory Computer Implementation of A* Algorithms

This section is a summary of what was learned about implementing A* algorithms on dis-

tributed memory computers using data decomposition. This section is composed of three parts:

determination of whether to use a centralized or distributed list algorithm, factors effecting the use

of a distributed list algorithm, and factors effecting the use of work distribution.

The most important decision is whether to use a centralized list or distributed list to store

the states to be expanded. The following are some general guidelines on which list to use:

"* Is the problem to be scalable to a large number of processors? If the algorithm is to be

scalable to a large number of processors, then use the distributed list. If the algorithm is only

going to be run on a small number of processors, then use a centralized list.

"* beterrmine the boundary between centralized and distributed list. Sometimes the number of

processors available might be on the borderline between which list is optimal. The determi-

nation of which list, to use is then determined by trial. llowever, the number of processors

effectively controlled using a centralized list varies and is dependent on the communica-

tion/interconnection network and the processor computational speed of the individual corn-

puter. The faster the processor, the larger the number of processors efficiently used with a

centralized list. For tlie Intel i PSC/2, the centralized list. is efficient up to approximately

16 processors, and possibly miore efficient than the distributed list, until about 32 processors.

6;-17

The Intel i860 can efficiently control approximately 40 processors using a centralized list with

the computation requiring 40 ms and using the short message protocol [Work, 1991].

The following is a guideline for when using a distributed list:

"* Unless there is some special attribute of the problem known during algorithm design to

preclude it, load balancing is required to make the algorithm run efficiently.

"* The number of states awaiting expansion on a processor before it can share work to load

balance is dependent on:

- Problem size - States awaiting expansion before allowing load balancing are inversely

proportional to the amount of computation required to expand one state.

-- Children generated - States awaiting expansion before allowing load balancing are

•nversely proportional to the number of possible children generated by each state.

Graduating scale - Consid - making the states awaiting expansion on a processor before

it can share work dependent on at what stage of the program it is in. For example, require

a relatively small number of states awaiting expansion at the beginning of the program,

increasing the states required as the program progresses. At the end of the program,

a relatively large number of states is required for a processor to share work by load

balancing.

- Processor speed - States awaiting expansion before allowing load balancing is directly

p,-oportional to the computational speed of the processor.

While the major impact on program execution time is from load balancing, distributing work

can also reduce execution time. Factors effecting distribution are:

* Numerous states with same cost Always have some function to keep from distributing work

if the states have the same cost. The minimal overhead of keeping track of the number of

6-18

PROCESSOR # STATES EXPANDED PROCESSOR # STATES EXPANDED

1 82 5 37

2 82 6 30

3 58 7 23

4 43

Table 6.1. States expanded by processor using CL and 100 cities

same cost states distributed is very minimal compared to the cost of removing and inserting

the states into the OPEN list and transmitting the states between processors.

* The more computation required to expand a state, the fewer states expanded between work

distributions.

While this research did not investigate methods to increase the efficiency of the Cl. algorithm,

a couple of observations were noted. First, slave processor efficiency is inversely related to the

frequency of w(-k requests to the master processor. There is a wide variance in the number of

states expanded by each processor in solving a problem. For example, the 100 city problem using

8 processors had the distribution in Table 6.1.

Notice the lower the processor number the more states it expanded. While this is dependent

on the manner in which idle processors are selected to send work to, this does show a few of the

processors are performing most of the work. Processors 1 and 2 expanded 164 out of 355 states

or 46%!,l The individual processor efficiencies also reflect the same trend with processor 1 having

the highest efficiency and processor 7 the lowest. This shows processors are waiting for work to be

assigned to them. Therefore some method of keeping the frequency of work requests low should be

investigated.

Second, the computation speed vs communication speed ratio is a major factor in determin-

ing the nimniber of slave processors a master processor can efficiently control. For example, when

6- 19

using the Intel iPSC/2 hypercube, the master processor controls approximately 16 slave proces-

sors before the communications bottleneck does not allow the efficient addition of more processors

to the problem. However, the Intel i860 hypercube can control an estimated 40 slave processors

'IWork, 1991 :] While little data was collected using the Intel i860 hypercube during this re-

search, the data collected does appear to support that a master processor on the i860 hypercube

can efficiently control more processors than the iPSC/2. Since both computers have the same

interconnection/communication system, the only difference is the computational speed of the pro-

cessors. Test performed by Richard Norris, the Air Force Institute of Technology iPSC/2 system

administrator, show the ratio in computational speed between the i860 and the iPSC/2 is about

14:1. The overall ratio of execution times between the i860 and iPSC/2 is about 8:1. The differ-

ence between computation speed and execution times is caused by both computers using the same

interconnection/communication network.

6.5 Recommendation for Further Research

In any research effort, there is always work you did not have time to perform and new ideas

that evolved but were not explored. The following is a list of topics to further extend this research:

1. Investigate a dynamic algorithm that is a combination centralized list and distributed list. As

noted earlier, much of the processor idle time was waiting for the master processor to provide

work to the slave processor. One way to alleviate this is to have the slave processor send

tl,,& low cost children it generates to the master processor and keep a portion of its high cost

children generated. This reduces communication costs and provides low priority work for the

slave processor while it is waiting for work from the master processor. Another possibility

is to have the slave processors which are consistently waiting for work keep a small portion

of low cost children for expansion while waiting for the ma-ster processor to send work. The

6-20

processors which consistently wait for work are easily determined as discussed earlier in this

chapter.

2. Since the centralized list is the most efficient for small numbers of processors, investigate

ways to optimize the use of this list. Many Air Force requirements in the future will require

small parallel computers on board aircraft to perform functions now being performed at the

support base or not being performed at all.

3. Investigate other methods of distributing work among processors. One method suggested

by Felten is to randomly select processors to distribute work to instead of sending it to the

nearest neighbors [Felten, 1988: 504].

4. Determine the number of processors a master processor can efficiently control on the Intel

i860 RISC computer.

5. Make the termination sequence for the distributed list more efficient. If a processor is still

idle after requesting work from all other processors, it goes into a loop waiting for the RING

to come to it to terminate the process. Sometimes,a processor which did not have enough

work to share keeps generating children and continues to work long after other processors

are idle. After a processor has been idle for a predetermined time, it could force a working

processor to share any of itrs remaining work.

6. Investigate more fully the differences between IDA* and the distributed list algorithms.

6.6 Summoary

l•ecause of the combinatoric nature of NP-complete problems, they will continue to be diffi-

cult and time consuming to solve. Many factors encourage the use of parallel computers to solve

these problems. First, parallel computer costs are decreasing while their performance is increas-

ing. Secondly, these problehms have inherent parallelism as demonstrated by the relative easfe with

6-21

which they are decomposed using data decomposition. Also, it is getting more difficult to increase

performance of sequential computers.

This research investigated NP-complete problems on distributed memory architecture com-

puters by implementing a traveling salesman problem using a variation of the A* algorithm. Dif-

ferences between using a centralized or distributed list to store the states waiting to be expanded

were explored. Three distributed list algorithms, DLNLB, DL.LB, and DLDIST, were designed

and implemented. Advantages and disadvantages of each were discussed and compared to the

centralized list algorithin.

The centralized list algorithm is found to perform better than the distributed list algorithms

when using a small number of processors. However, this algorithm produces a communication

bottleneck and is not scalable to a large number of processors. While the number of processors the

master processor can efficiently control is application and computer dependent, some guidelines are

given to help determine this value.

Because of the overhead required for load balancing, the distributed list algorithms are not as

efficient as the centralized list algorithm for small numbers of processors. However, the distributed

list, algorithms are scalable to large numbers of processors and become more efficient than the

centralized list algorithm. Factors relating to the efficiency for load balancing and distributing the

work are discussed. Major factor to load balancing and distributing efficiency include computation

required to expand each state, number of children generated by each state, at what stage in the

prograi you are, and the computational speed of the processors.

6-22

Appendix A. Structure Chorts

A.1 Introdfction

This appendix shows the relationships between the different functions and subroutines of each

algorithm using a structure chart.

A.2 Centralized List Algorithm

The centralized list algorithm consists of three main algorithms, each with subroutines and

functions. The three algorithms are the Host, Control, and Worker algcrithm,s. The IDA* structure

charts are identical to the centralized list charts. The difference in the algorithms is when the

NODEs are inserted into the OPEN list. Their structure charts are:

[CL HOST

F COSTMATRIXO

Figure A.1. Centralized List Host Structure Chart

A-1

INSERTPRIORI ()PRUNEQj)

Figure A.2. Control Structure Chart

COP EN4 ASG

INIT-Q0TOUR0O

INSERT PRIORITY(IPUN j

DYISTRIBUEJ REEIE-D! 4)

F igu~re A .3. Cent ralized List Worker Structure Chart

A- 2

A.3 Distributed List Algorithms

The distributed list algorithms' structure charts are shown below are each shown below.

Since the host algorithm is the same for all variations of the algorithm, it is only shown with the

distributed list with load balancing.

A.3.1 Distributed List with Load Balancing The following structure charts are for the dis-

tributed list with load balancing algorithm:

IDL HOST

cosTAT ,x J [woRKERO

-ir' A.4. Distributed List Host Structure Chart

SHAREWORL WOK R EIV_ RK

ICOPY-N DE0 ASSIGN()

Figure A.5. Distributed List, Worker Structure Chart

A-3

A.3.2 Distributed List with Load Balancing and Distribution The following structure charts

are for the distributed list with load balancing and distribution algorithln:

CDL HOSTO R

Figure A.6. Distributed List Host Structure Chart

[CoPY_•~o• •I ASSIGN

DEET Q-•) rINPATH(

INSERTPRIORITY(I

SHAREWOR RECEIVEWOtKO

DISTRIBUTE)(RECEIVEDIS)

Figure A.7. Distributed List Worker Structure Chart

A A

Appendix 13. Test Results and Data

B. I Introduction

This appendix presents the test data from all the algorithms tested. Each algorithm was

tested using four different size problems; 22, 55, 65, and 109 cities and stored in files n22a, n55a,

n65a, and nl00a respectively. The description of the problems is in Appendix C.

The algorithms tested and their abbreviation used are:

1. Centralised list (CL) -- Shown on charts and tables as tsp

2. Iterative Deepening A* - IDA*

3. Centralized list with levels - Shown on charts and tables as level

4. Centralized list with levels -- level

5. Distributed list, with no load balancing (DLNLB) - Shown on charts and tables as nib

6. Distributed list with load balancing (DLLB) - Shown on charts and tables as dish

7. Distributed list with load balancing and distribution (DLDIST) - Shown on charts and

tables as (list

B.2 Data

This section presents the data in three (lifferent forms. The data is first presented in tables

providing all the pertinent inforiiation collected about the algorithms. The data is then presented

in graph form for ease of understanding and to display trends in the data. The CL algorithm was

not run using 2 processors because then there would be the Control processor and only one WVorker

processor. This is the same as the sequential algorithm except with the parallel communication

overhead. Also, some algorihuns were not run using :2 processors due to hardware problems with

the iPS(C/2 coinputer.

I- I

FILE n22a FILE n55a

RUN STATES AVERAGE RUN STATES AVERAGE
NODES TIME EXPAND EFFICIENCY TIME EXPAND EFFICIENCY

1 16.83 25 0.823 754.57 148 0.996

2 NOT USED NOT USED

4 6.52 25 0.482 431.42 157 0.882

8 9.493 44 0.290 219.71 177 0.656

16 7.801 72 0.270 220.996 241 0.487

32 6.775 77 0.256 221.001 288 0.300

FILE n65a FILE nl00a

RUN STATES AVERAGE RUN STATES AVERAGE
NODES TIME EXPAND EFFICIENCY TIME EXPAND EFFICIENCY

1 12341.3 1696 0.999 25724.1 737 0.999

2 NOT USED NOT USED

4 4153.2 1697 0.986 7201.7 581 0.938

8 1825.8 1710 0.981 2720.5 355 0.863

16 925.1 1767 0.973 2671.289 349 0.422

32 558.588 1963 0.949 2671.333 463 0.258

Table 13.1. I (.tralized Ilist Dat a

1I-2

FILE n22a FILE n55a

RUN RUN
NODES TIME (sec) NE EFF TIME (sec) NE EFF

1

2 29.8 74 0.856 1142.8 443 0.988

4 27.0 124 0.841 1142.8 739 0.988

8 27.0 224 0.842 1142.8 1331 0.988

16 24.0 419 0.829 1144.0 2501 0.987

32 24.8 803 0.832 1143.1 4115 0.988

NE = total states expanded

EFF = average efficiency per node

FILE n65a FILE nl00a

RUN RUN

NODES TIME (sec) NE EFF TIME (sec) NE EFF

1

2 22485 5017 0.838 41151 2810 0.947

4 17921 8866 0.843 33504 4103 0.950

8 15534 14971 0.851 31145 7113 0.952

16 13762 33025 0.825 28971 14892 0.966

32 13015 81132 0.861 30655 28463 0.967

NE = total states expanded

EFF = average efficiency per nfode

Table 1.2. Distrilhuted List with no Load Balancing Data

IB-3

FILE n22a FILE n55a

RUN RUN
NODES TIME (sec) TE SH EFF TIME (sec) TE SH EFF

1

2 25.1 74 7 0.805 1142 443 6 0.983

4 33.8 193 47 0.820 1140 783 74 0.993

8 24.1 305 235 0.884 1103 1495 243 0.709

16 23.8 517 469 0.798 1089 1752 701 0.738
32

TE = total states expanded

SH = number of times work was shared

EFF = average efficiecy per node

FILE n65a FILE n100a

RUN RUN

NODES TIME (sec) TE SH EFF TIME (sec) TE SH EFF
1

2 18846 3033 18 0.943 27221 1620 6 0.997

4 15291 7686 24 0.873 20117 3069 25 0.997

8 11529 14108 89 0.891 16381 6013 89 0.997

16 6394 26714 483 0.894 9210 11892 320 0.996

32 3229 33097 612 0.651 2995 24493 1184 0.996

TE = tot ?1 states expanded

SH = number of times work was shared

EFF = average efficiecy per node

'Fable B.3. Distributed List with Load Balancing i)ata

B-4

FILE n22a

RUN STATES AVERAGE
NODES TIME EXPAND EFFICIENCY DIST SHARE

(sec)

1 not used

2 32.7 92 0.805 33 12

4 27.2 157 0.784 39 35

8 14.7 252 0.576 198 292

16 13.2 424 0.694 1 94 400

32 not used

FILE n55a

RUN STATES AVERAGE
NODES TIME EXPAND EFFICIENCY DIST SHARE

(sec)

1 not used

2 1229 443 0.914 27 6

4 988 757 0.959 41 35

8 758 1210 0.833 72 281

16 297 2193 0.800 145 523

not used

Table 13.4. Distributed List with Load Balancing and Distribution 1 of 2

13-5

FILE n65a

RUN STATES AVERAGE
NODES TIME EXPAND EFFICIENCY DIST SHARE

(sec)

1 not uesd

2 20011 4172 0.996 21 30

4 12977 7725 0.996 54 56

8 7034 14253 0.989 65 131

16 2529 21150 0.984 84 450

32 not uesd

FILE nl00a

RUN STATES AVERAGE
NODES TIME EXPAND EFFICIENCY DIST SHARE

(sec)

I not uesd

2 28712 1617 0.997 4 12

4 24619 3051 0.997 61 24

8 13011 5844 0.997 83 74

16 8901 11858 0.997 142 320

32 2935 20277 0.988 191 570

Table 13.5. Distributed List with Load Balancing and Distribution 2 of 2

B-6

B.2.1 Execution Time Graphs This section presents the CL, DLNLB, DLLB, and DLDIST

algorithms' execution time data in graphical form for ease of understanding. The graphs show all

four algorithms for each problem size.

3 5 , 1 1 1 1 1
'dist22.gnu' 41
'dlsh22.gnu' 4--

30 'nlb22.gnu''tsp22a.gnui'
-

25

Run
time 20 -
(sec)

1510

0 5 10 15 20 25 30 35
Number of processors used

Figure B.1. Execution Time Data for 22 Cities

B-7

1400

1200

1000

Run
time 800 'dist55.gnu' -
(sec) 'dlsh55.gnu' -+-)nlb55.gnu'Q

600 'tsp55.gnu'

400

200
0 5 10 15 20 25 30 35

Number of processors used

Figure B.2. Execution Time Data for 55 Cities

25000 1 ,

'dist65.gni' 4
2 0 0 0 0 ~'d ls h 6 5 .g n u ' - -

20000 nlb65.gnu'
'tsp65.gnu'x

15000time
'

(sec) 10000

50000

0! I I

0 5 10 15 20 25 30 35
Nimrinhr of processors used

Figure B.3. Execution Time Data for 65 Cities

11-8

,15000 1 1 1 1 1S ~~'dist lk.gnu'--

40000 'dish1k.gnu'
'nlblk.gniu'

35000

30000 'tpl3gu L

RuII 25000
tiltic

(sec) 20000

15000

10000

5000 -

0 5 10 15 20 25 30 35
Number of processors used

Figure B.4. Execution Time Data for 100 Cities

B-9

B.2.2 States Expanded Graph This section graphically presents the number of states ex-

panded by all algoiithms for each problem size.

900

800 'dist22no.gnu' 4 -
'dlsh22no.gnu' -+--

700 'nlb22nod.gnu' -u--

600 tsp22nod.gnu' x

States5
0 0

expanded 0

300

200

100 - x -

0
0 5 10 15 20 25 30 35

Number of processors used

Figure B.5. States Expanded Data for 22 Cities

4,00

-1000 'dist55no.gnu' -
'dlsh55no.gnu'--

3500 'nlb55nod.gnu' -a-

3000 'tsp55nod.gnu'

Stat,;500
x pan 0

1500

1000

500
0 x X X

0(× I I I I I I

0 5 10 15 20 25 30 35
Number of processors used

Figure B.6. States Expanded Data for 55 Cities

1F-10

90000 1 1 1 1 1 1

80000 -

70000 'dist65no-gnu' -•-
'dlsh65no.gnu' -+-

60000 ,,nlb65nod.gnu'

Statp.
0 0 0 'tsp65nod.g nu' x

expai*Ao
0o

30000 -

20000

10000

0 xT × a x I I X

0 5 10 15 20 25 30 35
Number of processors used

Figure B.7. States Expanded Data for 65 Cities

30000 1 1 1 -- I 1 _

2500 - dist I kno.gnu" -,4z-

25000 'dislilkno.gnu' -+-
"nlblknod.gnu' 4 ;

20000 - tsplfknod.gnu' -x--

State 0
expa,? 0

10000

5000

0
0 5 10 15 20 25 30 35

Number of processors used

Figur, B.S. States Expanded Data for 100 Cities

B-I11

B.2.3 Share Data This section provides the data on load balancing . First, the table for

the share variables and then the graphs are provided.

40

38

36 'share22.gnu'

34-

Run 32
time
(sec) 30 -

28

26

24

22 I I I I I I

3 3.5 4 4.5 5 5.5 6 6.5
Number of processors used

Figure B.9. Execution Tiimefor 22 Cities

1300 , , , , 1 1 1

1250 -share55.gnu' -

Rui 1200

time
1150 -

1100 -

1050
4.2 4.A 4.6 4.8 5 5.2 5.4 5.6 5.8 6

Number of processors used

Figure .B.10. Execut ion 'Time for 55 Cities

13-12

FILE n22a

RUN STATES AVERAGE
N/S TIME EXPAND EFFICIENCY DIST SHARE

(sec)

16/3 38.7 847 0.546 0 427

16/5 23.8 517 0.798 0 235

16/7 24.5 506 0.783 0 220

N/S/B - # of nodes used/share variable

DIST - # of times program distributed work

SHARE = # of times program shared work

FILE n55a

RUN STATES AVERAGE
N/S TIME EXPAND EFFICIENCY DIST SHARE

(sec)

16/4 1213 1740 0.607 0 1034

16/5 1089 1752 0.738 0 701

16/6 1291 1788 0.699 0 683

N/S/B = # of nodes used/share variablc

DIST = # of times program distributed work
SHARE - # of times program shared work

Table, B.6. Share Data I of 2

11- 13

FILE n65a

RUN STATES AVERAGE
N/S TIME EXPAND EFFICIENCY DIST SHARE

(sec)

16/3 37295 34089 0.592 0 12382

16/4 6394 26714 0.894 0 483

16/5 6752 28113 0.884 0 494

16/7 6752 28113 0.884 0 494

N/S/B = # of nodes used/share variable

DIST = # of times program distributed work

SHARE = # of times program shared work

FILE nl00a

RUN STATES AVERAGE
N/S TIME EXPAND EFFICIENCY DIST SHARE

(see)

16/3 27838 18045 0.639 0 13056

16/4 9210 11861 0.997 0 320

16/5 9662 11804 0.997 0 316

16/7 9662 11804 0.997 0 316

N/S/B = # of nodes used/share variable

DIST = # of times program distributed work

SHARE = # of times program shared work

Table B.7. Share Data 2 of 2

H- I I,

40000

35000

30000

Run 25000 'sharelk.gnu' -•-
time 'share65.gnu' --

(sec) 20000

15000

10000

5000
3 3.5 4 4.5 5 5.5 6 6.5 7

Number of processors used

Figure B.11. Execution Time for 65 and 100 Cities

425 4 . 1

424.8

4 24.6

424.4

424.2
Statesexpand'4

4123.8 ,
423.6'dstrbute22no.gn-

423.4

423.2

423 1 I 1 1 1 I 1 I 1

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
Number of processors used

Figure B1.12. States Expanded for 22 Cities

13-15

1790 / 1 1 1

1785

1780 - 'share55no.gnu' -

1775 -

1770 -
St atens-,

expanuJ('A+

1760 -

1755 -

1750 -

17.15 -

17 10 II I I I I I I I
4 142 4.4 4.6 5.8 5 3.2 5.4 5.6 5.8 6

Number of processors used

Figure B.13. States Expanded for 55 Cities

:15000 1 1 1

30000 'share65no.giu' 4-

25000

St ;it ('S expia

20000 -

15000 -

10000 I i
3 .5 ,1 4.5 5 5.5 6 .5 7

Numlber of processors used

Figure B.14. States Expanded for 65 (Citiles

B- 1 ;

19000 1 I

18000< 'sharelkno.gnu' - -

17000 -

16000 -

Stlat

exptV0P
14t000-

13000 -

12000 - _7 >

11000
3 3.5 4 4.5 5 5.5 6 6.5 7

Number of processors used

Figure B.15. States Expanded for 100 Cities

B-17

B.2.4 Distribution Data This section provides the data on distributing work . First, the

table for the distribute variai1es and then the graphs are provided.

14 1 , 1 1

13.91 'distribute22.gnu' -4--

13.8

13.7

Run 13.6 -
time
(sec) 13.5 -

13.4

13.3

13.2 -

13.1 I I I I I

6 (.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
Number of processors used

Figure B.16. Execution Time for 22 Cities

:135 1 1 I 1

330 - 'distribute55.gnu' -

325

320
Run
tile 315 -
(Sec)

310 -

305

300

295 I I I I i I I
6 (.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

Number of processors used

Figure 13.17. Execution Time for 55 Cities

13-18

FILE n22a

N/S/D RUN STATES AVERAGE DIST SHARE
TIME EXPAND EFFICIENCY

16/7/6 13.9 423 0.694 95 400

16/7/7 13.2 424 0.694 94 400

16/7/8 14.0 425 0.621 84 391

N/S/B = # of nodes used/share variable
and distribute variable

DIST = # of times program distributed work

SHARE = # of times program shared work

FILE n55a

N/S/D RUN STATES AVERAGE DIST SHARETIME EXPAND EFFICIENCY

16/5/6 328 2199 0.800 142 280

16/5/7 297 2193 0.800 145 281

16/5/8 335 2180 0.765 151 274

N/S/B = # of nodes used/share variable
and distribute variable

DIST = # of times program distributed work

SHARE = # of times program shared work

Table B.8. Distribution D)ata I of 2

3-19

FILE n65a

N/S/D RUN STATES AVERAGE DIST SHARE
TIME EXPAND EFFICIENCY

16/4/5 2852 20029 0.965 89 450

16/4/6 2529 21150 0.984 84 450

16/4/7 2997 26714 0.979 78 450

N/S/B # of nodes used/share variable
and distribute variable

DIST = # of times program distributed work
SHARE = # of times program shared work

FILE nlOOa

N/S/D RUN STATES AVERAGE DIST SHARE
TIME EXPAND EFFICIENCY

16/4/5 9672 11029 0.943 161 318

16/4/6 8901 11858 0.997 142 320

16/4/7 9513 12026 0.996 140 320

N/S/B = # of nodes used/share variable
and distribute variable

DIST - # of times program distributed work
SHARE = # of times program shared work

Table B.9. Distribution Data 2 of 2

1-20

3000 1 1 1 1 1 1

2950 'distribute65.gnu' -

2900

2850<

2800

StatesW240 ed

2700 -

2650

2600

2550

2500 I I I I I

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
Number of processors used

Figure B.18. Execution Time for 65 Cities

9700< I I I I I

9600 'distribute I k.gnu' 4-

9500

9400(-
Run
time 9300
(sec)

9200

9100 L

9000

8900 v
5 5.2 5.A 5.6 5.8 6 6.2 6.4 6.6 6.8 7

Number of processors use(d

Figure B.19. Execution Time for 100 C(iies

I}-21

425 1 , 1 1

424.8 -

424.6

42-4.4

424.2
States

expand' 4

423.8 - 'distribute22no.gnu' -4-

423.6

423.4

4123.2

423 <I
6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

Number of processors used

Figure B.20. States Expanded for 22 Cities

2200 1

2 198

2196-

2194

2192 'distribute55no.gnu' -4-
StanP?

expaI ((
2188

2186

2181

2182

2180
6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8

Number of processors used

Figure, B.21. States Expanded for 55 (ities

B-22

27000 1 1 1 1 1 1 1 1 1

26000- distribute65no.gn -i'

25000 -

24000
States expa ded

23000

22000

21000

20000 I I I i I i

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
Number of processors used

Figure 13.2;'. States Expanded for 65 Cities

12100 1 1 1 1 1 1 1 1 1

12000 -

11900

11800

11700

Stattk.30 0 (

expafyq 0 d (ist ributel1kno~gim' -9

11400
11300

11200

11000 i I i

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
Number of processors used

Figure 11.23. States Expanded for 100 Cities

B-23

B.3 IDA* Data

This section presents the data comparing the centralized list algorithm against the IDA*

algorithm. Both tables and graphs similar to those presented for the distributed list algorithms are

presented here.

30000

25000 'idalk.gnu' 4-
'ida22.gnu' --

"ida55.gnu' -
20000 'ida65.gnu' -x---

Run

time 15000

10000

5000

0
0 5 10 15 20

Nunibr of processors used

Figure B.24. IDA* Execution Time Data

IH-21

FILE n22a FILE n55a

RUN RUN
NODES TIME TE IDA* EFF TIME TE IDA* EFF

1 15.0 25 19 0.850 744.6 148 139 0.997

2

4 9.6 25 19 0.501 482.6 148 139 0.891

8 13.9 25 19 0.320 391.6 148 139 0.715

16 9.5 81 35 0.315 435.4 253 220 0.692

32 9.0 94 39 0.301 452.9 261 222 0.691

TE = total states expanded

IDA* = states expanded during IDA* DFS

EFF = average efficiecy per nodle

FILE n65a FILE n 100a

RUN RUN

NODES TIME TE IDA* EFF TIME TE IDA* EFF

1 16392 1696 1682 0.999 27542 762 728 0.999

2

4 4804 1945 1928 0.987 7311 345 339 0.941

8 2352 1979 1948 0.986 2915 366 349 0.806

16 1247 2009 1955 0.961 2722 381 351 0.471

32

TE = total states expanded

IDA* = states expanded during IDA* DFS

EFF = ,erage efficiecy per notde

Trable 1.10. II)A* D)ata

Ii- 2-7)

FILE n22a (sec) FILE n55a (sec)

RUN RUN
NODES TIME TE LVL EFF TIME TE LVL EFF

1 17.0 25 25 0.866 761 148 148 0.998

2 not used not used

4 7.2 25 27 0.511 438 157 166 0.899

8 9.8 42 51 0.382 220 177 184 0.741

16 8.1 72 84 0.294 221 241 271 0.512

32

TE = total states expanded

SH = number of times work was shared

EFF = average efficiecy per node

FILE n65a (sec) FILE nl00a (sec)

RUN RUN

NODES TIME TE LVL EFF TIME TE LVL EFF

1 31057 1696 3762 0.999 26201 737 737 0.999

2 not used not used

4 27111 1697 5101 0.999 3821 581 341 0.966

8 22592 1710 7993 0.985 2650 355 329 0.894

16 20760 1767 11658 0.982 2687 349 361 0.500

32

TE = states expanded using original TSP code

LVL = states expanded using levels

EFF = aver-age efficiecy per node

Table 13.11. Centralized List using Levels Data

13-26

2200 1
2000

1600 -'idalknod.gnu' 4-01600 -'ida22nod.gnu' -+--
1400 -'ida55nod.gnu' r-Q

State6s2 0 0 -'ida65nod.gnu' x*-

expanq4j 0

800

600

400

200

0 5 10 15 20 25 30 35
Number of processors used

Figure B.25. IDA* States Expanded Data

350001 1 1

30000

25000 'Ievlk.gnu'
'1ev22.gnu' -I--

Runl 20000 '1ev55.gnu' 4;- -

time '1ev65.gnu' x*-

15000ioo

10000

5000

0 '

0 5 10 15 20 25 30 35
Numbler of processors used

Figure 1126. Level Execution Time Data

11-27

1800 *

1600 -
'levlknod.gnu' 4-

1400 - 'lev22nod.gnu' ----

1200 'lev55nod.gnu' -u.
'lev65nod.gnu' -X---

Stat.O
0 0 -

expand"I 0

600

400

200 -1 r

0 I I ' I' I

0 5 10 15 20 25 30 35
Number of processors used

Figure B.27. Level States Expanded Data

13-28

Appendix C. Problem Definition and Data

C.'. Introduction

This appendix provides the cost matrices and solutions for the four main problems used in

this research. Each section is divided into two parts: a cost matrix and a solution to the problem.

As explained in Chapter 11, the cost of traveling from one city to another is determined by selecting

a city, finding that column, and then finding the intersecting row of the city that you are traveling

to. For example, in the 22 city problem, the cost of traveling from city 4 to city 7 is 53 while the

cost of traveling from city 7 to city 4 is 67. Again notice that the costs are not symetrical. A cost

of 999 indicates infinite cost.

(.2 Proble I n22a

This is the cost matrix for problemi n22a:

999 63 63 64 93 31 82 32 82 92 91 92 40 70 73 81 58 55 99 97 43 96
55 999 17 95 80 37 53 57 36 43 86 19 80 31 86 99 74 82 44 53 61 91
39 78 999 73 11 63 88 76 34 54 68 40 62 96 84 78 60 77 44 51 3 86
49 11 48 999 50 73 53 74 43 26 0 23 93 81 78 43 63 98 62 11 71 60
72 46 38 62 999 65 82 42 40 93 53 56 44 42 59 14 37 13 55 .•0 1 3
89 57 33 18 97 999 69 52 50 70 32 3 29 42 36 31 30 23 63 34 40 14

0 79 95 67 87 60 999 44 4 9 41 61 28 44 58 79 54 32 4 14 85 71
17 98 6 78 82 39 40 999 90 88 26 57 85 90 97 16 25 54 68 18 52 4
78 9 85 23 7 46 1 47 999 4 35 98 37 59 79 47 98 94 53 96 7 69

7 72 41 85 15 28 8 88 12 999 2 0 22 6 90 6 1 20 88 45 71 61
69 37 76 84 28 24 37 84 61 7 999 15 3 25 83 93 12 79 16 33 19 40

6 74 59 81 93 81 44 1 35 39 9 999 94 35 41 30 33 33 83 60 16 80
96 6 31 2 35 13 70 51 17 58 9 87 999 48 11 58 82 55 67 79 80 72
59 23 25 63 8 1 51 81 70 70 58 62 91 999 79 0 58 69 15 29 82 93
18 37 66 2 75 75 56 60 59 98 70 22 53 45 999 41 31 41 35 89 8 79
85 59 18 21 47 50 57 0 42 19 49 71 41 19 9 999 26 90 2 40 73 35
10 14 99 73 63 58 89 33 69 70 14 81 13 0 36 33 999 3 96 62 21 76
25 36 75 8 11 56 13 3 46 16 64 67 84 86 99 5 37 999 76 54 55 15
93 74 82 0 38 44 81 99 16 48 25 46 76 79 67 21 20 81 999 54 67 49
50 25 47 54 20 31 97 67 96 21 39 9 67 69 99 32 58 57 52 999 59 6
22 15 56 81 74 50 91 71 75 73 95 15 8 24 91 76 62 21 54 88 999 11

7 45 78 7 92 93 44 69 71 35 22 20 56 64 73 40 46 85 97 39 91 999

This is a solution for the n22a problem;

C- I

1-6-12-8-20-22-4-11-13-15-21-2-3-5-18-10-17-14-16-19-9-7-1

at cost 180

C.3 Problem u55a

This is the cost niatrix for problem n55a:

999 2 47 1 3 84 96 39 14 19 94 28 74 50 43 88 63 89 62 79 54 87
66 74 58 25 8 76 43 8 29 28 38 9 37 78 66 37 57 57 59 27 93 20

45 25 96 72 0 5 84 29 46 56 61

87 999 1 1 51 6 93 3 67 62 4 80 39 58 93 68 84 4 43 41 58 79

53 61 13 51 14 9 83 96 49 0 55 22 79 63 12 89 24 42 14 36 15 7

72 79 90 23 85 72 88 41 25 91 2

87 3 999 32 12 2 13 17 75 16 59 73 26 47 39 87 93 28 65 44 74 4

56 38 71 78 14 65 44 88 89 62 4 70 82 1 94 39 90 52 72 95 33 49

4 42 79 90 63 23 29 27 73 64 45

95 19 12 999 69 94 46 29 47 29 72 74 86 17 80 25 63 57 25 34 55 3
92 52 9 76 66 27 30 34 29 37 81 98 90 69 67 49 50 61 23 21 92 68

26 84 78 15 12 76 60 96 75 89 59

32 69 90 74 999 9 72 19 44 86 9 59 12 66 99 25 72 31 5 88 90 20

95 45 89 50 45 85 75 78 62 12 59 90 94 96 99 4 2 19 76 60 36 46

85 82 74 29 45 40 80 79 29 65 0

90 28 53 65 80 999 5 47 95 16 73 51 85 55 58 80 53 74 40 26 99 87

14 34 80 79 60 71 61 66 77 7 63 17 39 68 77 21 90 67 71 57 38 59

74 85 37 79 1 40 4 1 66 38 74

37 52 65 92 25 63 999 49 42 51 50 0 50 20 13 92 79 7 98 63 5 4

88 99 98 34 69 9 24 56 1 78 17 12 4 57 80 21 60 16 5 68 41 21

81 88 69 69 86 2 64 74 90 32 84

65 72 55 30 53 48 75 999 31 49 27 10 98 65 9 63 25 87 80 66 66 74

5 33 36 55 37 21 36 73 90 7 18 82 28 13 67 51 77 31 81 82 64 83
42 42 24 72 29 6 25 86 31 57 84

2 38 80 59 35 99 18 59 999 8 73 40 76 53 46 97 66 12 39 68 93 52

93 20 58 87 38 73 35 4 56 19 68 60 97 66 52 49 45 44 11 0 67 22

30 82 77 86 95 89 24 29 16 8 19

36 66 65 49 51 79 95 47 12 999 64 54 27 59 56 34 53 27 9 29 41 68

77 45 53 29 96 22 85 39 43 40 36 72 24 45 54 62 23 3 82 32 33 84

9 1 48 98 76 54 41 98 74 13 5

85 77 76 25 52 66 3 85 71 7 999 21 96 87 12 89 49 9 89 19 89 67

('-2

22 25 43 50 54 55 15 57 36 19 46 15 70 89 59 38 10 50 63 94 9 47

70 68 44 67 4 24 82 89 74 6 72

92 96 66 66 0 32 74 64 36 68 49 699 64 38 65 24 22 70 63 68 98 30

55 16 66 34 76 29 79 66 11 86 97 16 34 52 45 38 74 2 90 14 44 2

70 33 27 71 74 76 19 54 10 85 81

74 94 80 57 7 17 18 84 11 65 46 54 999 59 35 94 19 12 45 23 53 56

50 99 25 27 97 44 94 46 96 46 66 38 39 90 79 39 11 89 29 35 73 50
93 60 23 98 62 92 54 60 79 59 41

1 55 87 88 74 64 75 52 80 53 25 41 76 999 79 76 95 62 38 64 85 60

60 37 82 63 23 47 41 18 10 32 98 45 38 31 7 26 37 71 92 71 71 30

74 75 96 2 6 3 60 90 57 32 2

6 - 73 75 5 93 79 74 58 87 48 48 28 78 999 52 33 30 70 6 70 38

72 4d 14 38 7 83 98 52 12 14 71 14 97 24 80 68 27 20 4 89 89 38

83 93 88 64 37 21 59 19 92 80 68

55 81 3 64 81 8 10 3 14 91 9 60 84 56 67 999 23 9 39 83 96 15

94 27 54 34 12 75 42 20 64 76 90 41 57 86 30 55 70 73 46 99 58 12

46 69 42 43 92 42 87 25 83 59 90

49 23 57 54 28 21 27 70 95 65 15 71 42 1 39 20 999 36 85 31 41 6
90 35 34 59 43 39 64 41 39 58 65 63 41 59 35 81 69 66 82 25 82 45

89 28 88 74 15 12 31 97 79 44 81

14 81 24 80 48 58 18 96 76 5 22 82 55 31 74 49 74 999 29 0 28 23

53 67 84 81 34 28 56 72 83 13 83 14 53 72 70 41 25 49 37 16 16 66

82 52 55 74 31 67 25 79 53 36 6

87 2E 18 8 69 66 66 40 2 8 18 80 15 46 17 98 61 23 999 32 92 49

47 88 61 21 36 98 76 67 35 30 32 45 30 58 64 30 91 73 67 66 47 56

9 52 36 2 80 47 62 47 85 82 39

89 7 56 28 33 41 22 86 76 52 5 64 45 43 28 64 87 61 30 999 9 63

12 67 32 47 11 2 41 28 33 86 54 41 56 18 54 13 68 20 48 37 61 94

39 39 46 97 76 54 87 16 78 18 4S

93 57 63 3 87 33 89 62 40 54 58 9 84 39 22 93 52 55 39 90 999 40

15 68 94 24 89 19 84 87 21 10 60 17 96 52 77 0 50 80 54 69 57 45

8 97 59 20 45 98 43 96 77 44 63

76 98 75 53 50 28 33 19 4 90 40 64 44 19 40 24 98 15 87 51 34 999

31 65 97 74 35 19 78 18 66 1 4 79 22 6 88 43 31 50 32 6 62 17

11 60 95 5 62 16 4 22 54 49 61

1 91 34 31 27 86 7 35 11 1 4 86 54 75 51 18 66 32 33 88 20 43

999 85 4 27 21 48 70 21 76 74 90 53 18 51 61 52 92 56 74 43 3 89

66 42 26 20 75 79 42 46 4 70 68

(C-3

89 18 75 4 19 47 48 30 53 42 99 41 57 1 45 19 22 5 97 70 45 95

10 999 49 22 4 18 27 11 35 11 24 73 82 84 28 29 29 52 87 54 53 22

66 91 88 3 84 47 94 76 42 59 24

83 15 91 40 17 2 9 23 98 77 65 78 90 57 54 95 68 20 5 28 3 14

39 76 999 76 71 40 8 84 70 97 93 69 29 86 87 8 96 92 6 7 23 49

60 31 35 46 49 13 29 62 10 93 88

55 47 68 92 33 56 58 59 33 34 63 55 23 62 57 85 92 71 99 60 37 23

12 85 1 999 79 22 78 5 47 77 1 44 0 62 22 82 48 37 53 49 63 73

89 46 47 3 21 81 98 85 42 33 31

7 12 23 66 15 26 73 59 73 49 51 23 62 2 39 38 29 15 3 89 64 58

58 0 11 7 999 6 51 61 26 1 88 87 0 60 44 29 34 0 6 69 8 94

61 57 0 79 13 7 18 32 75 15 50

21 48 56 92 29 55 40 27 97 3 97 80 99 71 88 90 44 53 83 33 2 12

18 83 8 69 47 999 50 48 1 22 87 57 59 71 71 49 17 54 30 5 22 76

97 10 22 30 77 91 34 42 93 51 66

70 48 53 38 60 14 4 43 2 51 16 37 66 22 77 5 18 79 64 67 5 43

32 33 46 12 83 27 999 32 36 54 98 84 55 34 61 22 59 62 93 87 91 0

27 81 31 99 3 64 50 44 93 59 57

84 93 77 39 26 43 45 93 1 40 89 63 34 12 78 45 95 35 28 82 14 80

55 2 77 91 77 14 39 999 64 19 56 60 76 17 69 82 67 5 41 93 13 60

57 27 77 75 47 87 42 93 66 15 79

32 21 85 97 92 40 67 49 63 8 62 52 10 39 72 57 74 68 41 23 89 89

43 7 62 90 94 5 35 81 999 21 22 21 14 69 10 30 63 10 87 42 25 72

72 83 21 12 7 77 45 31 4 25 74

44 62 50 42 83 40 57 59 45 5 69 94 87 69 26 76 38 57 70 98 44 12

17 46 10 20 44 89 58 39 27 999 89 12 7 60 87 68 51 48 1 23 30 85

16 5 6 36 43 49 9 95 36 43 40

6 11 98 68 70 64 94 4 12 10 28 12 39 20 64 31 47 35 19 75 52 85

0 37 1 84 68 66 38 22 9 73 999 1 76 72 27 20 14 50 27 43 41 28

51 71 18 2 26 11 53 57 51 14 85

24 38 77 54 11 57 82 25 94 54 0 65 16 81 57 62 88 29 37 85 40 39

13 36 88 6 79 42 17 46 56 47 37 999 38 71 2 23 44 47 93 22 78 51

65 42 87 14 81 3 13 61 7 57 60

80 16 69 62 79 55 75 16 94 17 79 88 75 44 70 69 23 18 6. 0 58 93

22 36 26 54 38 10 31 2 57 38 65 36 999 0 74 88 8 30 57 11 84 62

60 70 23 49 7 27 7 67 93 7 64

52 59 26 14 46 3 52 31 17 38 87 64 82 10 65 81 80 6 59 87 42 14

79 81 79 6 53 49 48 18 31 56 23 31 49 999 5 88 97 44 82 36 91 3

9 92 95 23 49 8 65 91 12 19 2

('-4

50 87 42 54 56 12 72 96 20 75 17 57 67 87 66 53 10 43 76 5 72 32
48 40 25 52 93 84 94 92 33 29 80 12 77 44 999 61 75 47 98 45 93 76
87 17 31 61 88 6 29 88 24 18 66

43 45 20 60 9 10 56 3 3 53 17 86 84 3 95 67 20 52 31 48 70 71
71 90 61 5 73 53 52 32 70 34 49 34 71 75 50 999 0 67 40 23 92 92
38 55 70 19 64 85 42 50 70 89 3

67 96 66 32 66 95 71 49 20 98 78 83 62 58 78 80 84 8 95 49 21 59
5 19 9^ 21 8 72 60 19 59 46 84 28 17 49 29 58 999 79 72 63 70 22

92 26 36 39 84 97 27 1 85 73 6

80 30 10 8 3 39 39 57 54 69 91 47 95 60 55 83 62 64 63 12 77 50
83 71 10 83 33 96 59 10 99 31 50 53 6 70 52 90 47 999 6 83 10 2
93 63 58 56 70 74 97 84 94 19 0

99 45 27 85 53 28 3 98 4 18 45 46 8 74 89 28 27 50 10 83 93 17
56 89 91 82 89 47 92 69 32 74 33 46 51 38 48 19 71 72 999 71 10 19

4 51 94 16 16 43 75 59 70 75 56

54 23 8 48 41 94 16 36 76 92 18 87 36 99 51 40 16 12 9 88 53 27
99 19 50 99 76 59 14 98 28 22 9 51 36 60 24 59 94 77 86 999 31 12
48 95 22 89 80 62 54 72 88 24 87
21 20 47 46 58 47 51 24 65 43 20 86 26 74 27 33 26 49 44 85 23 37
68 73 95 39 46 54 35 49 62 64 52 47 44 86 35 10 74 49 69 26 999 93
94 75 5 30 80 46 27 69 44 6 57

86 55 0 65 78 25 88 4 28 39 96 30 79 98 42 22 11 78 21 92 78 1
66 6 37 36 29 65 60 47 73 81 43 40 68 53 79 2 75 85 74 98 22 999
45 41 82 64 80 82 21 72 8 69 18

35 20 48 73 41 96 23 58 49 5 22 77 4 44 81 73 89 51 44 39 38 17
89 30 35 R3 35 60 7 91 64 77 35 25 87 72 58 68 8 30 78 61 99 48
999 7 25 87 50 41 27 78 57 47 18

65 23 11 93 9 51 45 37 77 70 69 27 38 15 84 8 8 65 22 72 45 11
14 66 83 33 60 1 72 57 57 32 80 91 59 35 6 16 70 18 26 38 58 26
77 999 28 96 25 24 97 96 62 22 93

28 17 92 43 93 25 81 45 45 54 90 96 71 29 16 88 39 25 8 83 41 91
76 38 34 39 2 9 29 53 84 62 90 70 14 58 4 46 23 7 18 33 63 13
52 26 999 57 4 7 27 63 91 75 86

95 78 77 53 27 37 3 27 13 90 35 70 28 76 42 45 5 90 21 25 38 42
25 11 7 3 31 72 39 5 99 71 21 18 65 48 31 45 18 65 83 22 7 41
20 84 74 999 61 94 22 65 70 37 40

67 60 4 1 34 23 60 25 74 69 4 72 15 52 86 82 25 42 28 4 11 83
52 27 17 35 20 99 62 19 50 81 37 16 42 14 41 25 94 3 75 2 50 86
70 9 8 86 999 24 36 6 26 27 48

('5

98 99 6 3 2 21 25 36 83 35 12 20 78 67 79 66 85 48 30 19 25 82

11 74 53 83 36 81 2 15 93 31 68 90 62 97 83 29 38 71 14 53 19 40

60 23 9 49 17 999 91 84 3 55 20

21 15 57 56 64 13 28 36 24 8 91 38 20 12 72 2 48 46 0 79 70 7

96 13 25 59 86 52 1 64 57 30 49 50 63 41 97 65 88 55 97 73 64 9

37 77 66 56 3 38 999 37 46 66 55

86 47 90 60 96 3 91 11 12 82 78 41 57 99 6 29 46 86 26 60 97 87

84 48 87 47 24 63 2 4 19 41 90 1 2 95 62 40 56 15 54 18 92 65

2 8 15 33 90 71 59 999 22 43 46

53 44 88 71 62 24 77 63 59 24 60 89 25 90 42 52 12 13 48 84 80 46

69 6 33 64 4 0 11 22 62 84 85 82 45 93 1 98 87 54 41 22 76 37

24 5 66 41 58 69 82 68 999 93 87

72 16 84 8 28 97 98 5 26 47 71 78 58 16 66 48 4 61 62 88 74 35

34 18 12 37 79 47 72 24 20 5 69 86 79 14 30 20 37 95 47 45 24 75

91 51 9 16 4 92 44 1 86 999 17

55 68 30 91 10 38 26 49 16 31 26 85 46 61 37 75 47 32 17 38 3 46

64 49 21 52 75 43 55 75 67 19 24 77 50 75 39 99 76 12 6 43 17 67

62 59 3 0 49 67 0 76 89 99 999

A solution to the 55 city problem is:

1-2-18-20-28-31-53-37-50-29-7-12-40-44-3-36-6-49-4-22-32

-10-46-16-8-15-41-45-13-5-55-51-19-9-42-33-23-43-47-27-35

-30-24-48-26-25-21-38-39-52-34-11-54-17-14-1

at cost 134

C(.4 Problem n65a

This is the' cost matrix for problem n65a:

999 46 65 61 31 89 45 39 35 32 86 72 44 40 32 64 16 2 97 66 92 82

8 95 65 62 79 14 60 19 49 20 70 8 27 22 66 17 63 35 1 30 74 32

86 33 42 58 65 62 30 26 69 21 81 31 29 48 53 0 39 41 1 53 20

11 999 25 38 91 72 77 86 88 95 32 29 88 22 9 96 45 69 16 89 40 90

49 98 74 49 26 83 10 84 21 11 72 73 20 15 38 22 86 7 40 37 53 32

10 24 33 43 32 37 18 29 32 95 97 52 79 87 13 12 46 16 16 81 56

4 84 999 55 31 7 90 92 13 90 12 5 72 28 87 75 46 69 57 75 35 46
40 93 74 76 83 98 77 13 88 96 14 0 80 22 53 75 90 82 3 13 70 7

50 93 43 51 15 90 68 62 96 57 95 36 25 15 87 87 28 19 9 71 28

79 16 82 999 18 43 53 0 82 14 70 63 84 51 72 40 11 42 35 48 55 51

49 10 9 60 29 49 82 19 87 36 56 46 57 93 93 34 84 80 34 61 9 29

70 6 82 62 46 31 99 94 43 21 22 22 15 56 66 20 85 4 63 29 35

66 14 44 41 999 44 86 71 15 43 66 89 64 99 50 12 12 44 80 20 54 61

35 98 37 65 33 70 72 66 13 70 42 22 52 22 84 5 64 69 28 35 74 90

81 13 15 3 72 25 85 45 38 9 75 36 16 13 23 25 71 73 80 33 99

86 86 44 36 57 999 89 49 83 5 79 13 31 63 58 95 4 10 38 50 41 40

35 20 0 7 75 81 37 98 72 28 67 86 48 58 70 77 69 68 67 5 16 65

49 12 54 91 58 51 80 47 65 34 70 80 13 47 49 28 52 15 38 52 86

71 23 40 55 47 13 999 62 7 11 3 51 94 85 15 76 28 29 70 47 39 75

73 26 23 86 54 20 54 10 57 80 72 48 46 97 49 89 96 14 44 55 72 43

20 19 58 18 84 74 20 87 87 56 3 14 6 30 18 41 13 34 74 37 17

40 70 2 69 62 27 53 999 59 58 79 5 5 55 95 29 8 8 91 71 90 35

20 14 14 13 52 41 51 16 40 55 20 65 98 54 95 98 54 91 74 59 62 32

91 4 41 0 18 7 63 98 22 50 21 44 43 54 52 94 22 18 4 54 27

27 19 87 31 66 51 83 58 999 54 74 21 72 50 48 40 47 69 31 66 84 72
34 33 64 25 99 45 36 77 81 61 21 16 36 27 73 77 0 2 20 31 21 92

9 81 65 32 71 79 11 32 36 14 90 92 59 90 92 97 62 2 91 21 34

82 10 66 45 74 17 64 10 62 999 94 0 82 93 79 45 38 14 36 23 62 22

85 46 51 2 80 87 0 40 87 89 69 91 80 94 27 79 49 1 25 12 2 94

3 51 42 59 76 37 21 57 41 86 88 99 71 32 62 47 70 75 20 70 8

5 70 29 63 16 12 56 1 28 37 999 58 40 25 75 2 85 68 3 87 47 0

98 3 97 75 90 5 88 32 15 48 41 68 93 87 85 47 91 22 86 18 41 31

89 61 34 45 13 11 97 25 75 30 15 21 11 18 1 88 62 73 91 87 33

82 8 82 89 73 37 70 36 78 77 26 999 70 6 74 13 80 67 75 50 81 11

76 34 10 30 47 85 92 68 41 30 29 5 96 20 58 35 3 18 50 88 90 11

63 49 87 38 50 82 26 3 48 88 17 65 31 72 66 48 6 20 20 70 47

47 84 78 74 44 44 0 2 89 78 21 8 999 44 62 67 95 66 54 55 54 39

77 88 52 61 81 96 56 41 88 11 80 10 21 23 7 84 13 24 79 7 21 90

5 93 94 29 98 46 13 76 97 54 92 20 30 68 65 6 54 15 6 4 32

(C-7

17 38 24 91 44 1 87 4 24 50 11 77 31 99 44 68 85 38 82 96 7 88
39 96 29 53 8 57 3 31 66 83 51 45 20 45 12 82 96 93 51 11 49 43
78 30 71 3 91 83 82 11 2 5 89 94 57 96 54 91 5 15 99 57 93

60 97 78 91 68 91 30 30 61 87 76 83 38 71 999 3 91 71 24 15 63 73
51 8 98 69 94 10 46 1 65 53 22 84 24 14 1 37 14 30 31 20 47 95
63 7 9 20 74 88 1 62 94 1 36 43 80 65 40 15 12 24 96 77 14

60 3 74 12 65 20 4 84 94 34 16 47 94 17 46 999 69 37 59 73 64 99
52 54 71 94 53 69 9 28 26 82 53 52 54 77 17 68 41 48 63 38 99 86
24 94 58 60 14 10 94 95 27 85 48 7 83 62 13 37 74 62 84 99 99

16 82 5 72 66 69 4 86 0 50 14 8 39 32 83 58 999 23 85 77 0 82
0 50 3 93 50 75 36 44 40 9 88 60 42 68 57 84 38 22 10 16 8 39

40 37 76 18 26 45 64 63 95 18 22 9 97 65 47 38 13 0 62 40 31

81 74 74 76 53 9 39 7 42 49 35 89 64 89 50 16 3 999 80 56 12 26
65 26 72 79 1 80 18 93 16 96 18 66 71 97 97 41 48 34 85 91 95 32
77 37 75 75 73 41 32 98 14 44 74 22 75 28 98 46 59 91 9 32 47

23 41 71 44 56 22 4 68 98 57 63 25 11 7 5 81 63 40 999 87 91 82
3 32 0 87 38 19 0 2 79 49 24 80 10 96 0 10 32 21 84 51 60 19

13 77 21 95 36 25 38 87 54 23 68 70 81 92 40 73 65 7 62 95 31

57 57 2 43 56 14 77 73 94 19 29 9 38 24 50 9 7 79 27 999 11 19
88 66 31 31 8 49 6 21 66 29 29 95 76 47 44 49 34 3 19 95 91 77
44 59 56 22 82 46 69 63 93 31 84 92 35 49 63 15 99 67 68 60 55

20 47 88 30 85 99 84 78 43 94 82 76 85 26 74 42 61 95 87 94 999 21
74 73 23 76 44 38 48 8 8 76 15 18 34 44 91 96 78 16 85 12 24 61
20 97 77 51 57 0 30 14 32 95 85 45 0 70 8 15 12 77 29 12 34

60 54 68 73 90 13 38 86 4 96 58 52 14 18 81 34 27 66 93 17 92 999
3 56 50 38 94 6 49 11 7 49 72 11 39 4 18 8 76 43 63 6 10 81
3 92 96 99 59 66 9 4 19 92 52 69 29 80 63 2 38 55 91 51 5

81 72 32 92 68 10 99 50 59 51 37 71 63 19 59 26 94 21 22 35 15 92
999 61 5 17 58 24 54 92 92 25 13 80 21 23 20 24 87 21 49 61 54 27
74 60 72 58 5 10 78 20 54 50 84 88 54 87 71 88 95 42 23 61 88

99 7 18 22 35 88 42 10 66 4 50 58 57 35 79 74 34 75 34 58 59 20
54 999 96 92 15 77 55 97 35 60 30 54 65 48 42 33 88 70 87 80 40 40
29 68 23 44 22 42 57 96 20 44 95 74 59 15 53 68 83 21 9 41 51

81 52 15 53 55 68 64 17 70 82 51 84 40 84 62 50 34 22 37 40 44 5
80 14 999 64 66 5 28 87 28 98 34 72 7 77 81 75 7 25 8 85 3 43
48 97 39 84 96 95 85 49 46 3 47 50 43 3 85 56 56 34 44 76 45

44 51 94 18 7 17 41 13 66 63 2 71 68 71 80 45 99 12 26 58 38 20
74 68 49 999 59 92 32 42 78 31 86 64 95 56 78 38 83 40 58 10 33 46
30 83 0 60 89 80 51 50 52 3 57 57 23 8 55 78 12 31 81 34 39

(C-

24 95 13 72 92 89 1 48 31 41 19 25 16 47 52 64 53 70 42 67 92 57
50 50 10 57 999 41 44 57 10 34 62 36 96 49 32 93 82 81 31 7 96 71
52 42 36 65 82 62 58 82 1 36 21 19 67 38 70 79 4 17 20 62 21

36 25 10 18 22 82 87 94 30 61 72 67 9 54 51 31 0 15 13 77 75 52
5 68 32 46 9 999 24 45 0 64 58 49 95 38 17 74 42 36 7 82 12 27

14 5 25 14 74 54 28 12 42 82 86 39 58 85 56 54 32 47 9 30 90

17 69 6 43 97 49 28 41 36 82 71 69 23 42 33 85 95 37 82 42 39 28
23 82 12 88 96 47 999 34 71 64 82 10 60 85 98 7 59 7 16 85 19 37
95 57 96 69 47 85 99 93 43 32 17 10 62 52 83 16 47 91 47 20 68

83 67 40 16 28 93 0 91 80 86 53 86 13 16 66 83 76 21 75 39 52 26
0 31 31 32 58 39 72 999 65 28 29 49 74 71 51 21 43 80 4 89 67 78

93 98 61 12 31 70 60 24 84 31 94 72 29 32 43 93 18 3 51 1 21

70 46 70 56 49 32 99 65 4 63 34 91 24 95 74 65 96 27 2 23 1 66
19 8 C2 77 62 10 18 72 999 62 76 4 71 28 40 20 52 56 32 10 93 39
86 44 15 69 75 71 83 27 65 71 49 81 60 33 10 97 29 87 21 20 2

26 15 e6 69 74 32 0 35 73 26 9 72 12 85 92 87 30 71 88 4 19 56
77 89 5 5 98 53 86 1 59 999 50 36 69 67 40 27 31 23 47 19 49 93
38 94 4 20 42 1 19 0 1 63 30 77 38 43 6 24 48 97 73 47 14

86 66 17 5 31 14 65 21 95 2 99 1 53 4 9 21 33 12 76 4 26 83
90 97 ?9 14 67 43 6 75 95 29 999 20 32 22 80 15 40 81 79 38 6 67
31 65 22 63 82 92 78 28 25 68 64 15 29 5 40 17 59 3 7 64 75

3 75 M4 37 6 78 71 26 34 69 0 65 39 25 97 90 40 99 96 32 90 20
90 41 12 84 24 42 54 71 61 39 18 999 82 39 40 8 23 17 6 65 82 67
95 57 81 76 25 56 78 15 53 62 36 36 51 41 0 5 29 94 38 39 87

41 65 23 49 93 75 13 7 65 21 64 73 9 31 43 35 76 28 54 75 62 91
56 81 46 85 72 56 96 45 98 57 36 17 999 46 47 9 71 0 25 56 47 18
43 86 17 56 52 56 23 76 16 5 74 31 37 25 93 68 11 38 99 22 2

87 82 6 12 41 42 2 0 17 71 55 77 56 64 85 12 44 47 10 79 79 68
89 25 56 27 98 46 74 73 34 7S 35 22 93 999 79 44 61 50 48 49 53 60
39 19)4 82 63 73 3 80 31 9 93 38 2 81 44 65 4 59 73 79 90

74 15 0 11 82 31 29 92 70 42 88 17 88 42 45 92 34 15 42 98 25 6
69 97 35 79 39 55 53 11 77 12 22 29 10 98 999 51 89 34 70 26 70 85
63 73 19 84 37 3 56 79 30 65 58 15 48 83 25 78 94 92 62 95 1

86 43 76 86 27 74 75 89 16 84 64 48 96 2 91 69 16 49 8 73 36 10
28 72 1 21 46 9 45 2 50 53 59 58 78 49 86 999 94 6 4 60 84 0
10 80 34 40 39 93 3 41 29 86 49 3 25 53 28 33 47 90 12 70 40

91 89 92 53 77 58 31 77 66 55 66 75 90 63 49 45 79 45 85 27 31 4
81 43 95 53 93 50 77 3 99 78 88 40 93 59 55 73 999 68 46 35 64 30

(-9

97 92 34 15 85 73 16 49 60 96 98 22 66 68 24 42 16 93 24 88 91

41 96 18 51 80 84 11 61 17 32 92 54 60 31 53 76 63 47 1 38 43 59
93 50 34 54 30 39 30 22 78 47 66 60 2 74 48 2 73 999 44 22 62 15

20 4 1 20 7 89 82 41 38 6 84 47 54 15 38 35 69 21 14 16 90

67 89 43 66 32 72 41 28 45 11 92 57 46 92 92 72 19 86 64 92 92 33

80 52 19 25 30 51 0 51 31 72 4 54 3 56 70 73 88 57 999 6 50 47

90 6 25 21 16 6 6 99 96 45 5 36 91 72 10 54 89 9 49 3 88

90 11 74 0 80 54 98 83 46 35 31 71 42 51 38 87 56 43 33 34 14 64
38 58 27 46 44 80 31 29 52 44 28 69 10 81 45 30 34 66 59 999 43 65

9 23 54 92 13 35 44 23 50 21 43 27 23 25 32 64 78 14 10 17 54

42 88 65 73 57 17 42 46 63 33 61 70 22 59 10 62 94 46 53 83 60 41

50 60 93 85 78 0 19 49 47 76 80 75 87 79 45 0 79 35 65 14 999 62

19 46 18 34 46 42 0 3 99 62 26 8 55 83 8 9 86 72 33 74 8

74 94 22 91 43 62 52 89 25 81 77 8 43 22 50 85 5 43 16 85 31 35
13 66 99 21 82 71 43 19 9 27 85 22 48 28 93 92 11 40 28 15 78 999
84 70 27 58 11 5 62 1 24 44 72 57 66 38 29 17 81 3 98 9 18

56 22 2 4 38 41 21 32 44 43 33 89 49 26 8 63 45 29 97 94 47 72
11 68 78 19 29 3 32 62 14 75 86 42 55 89 94 66 30 81 67 13 5 22

999 46 78 26 91 21 33 6 93 62 75 28 26 93 68 67 49 78 72 39 3

2 15 8 17 85 22 61 46 80 26 91 39 96 76 57 54 17 17 26 51 44 54
40 73 10 31 39 90 65 88 85 14 77 89 57 74 72 33 55 33 19 29 82 59

75 999 15 20 83 37 38 17 54 57 84 94 17 9 16 20 24 86 72 64 64

80 31 30 82 54 56 32 52 76 27 35 60 59 91 84 28 10 71 9 47 37 6

15 74 95 84 47 74 72 87 99 53 32 61 18 79 66 19 23 93 36 67 2 76

4 33 999 33 3 82 45 88 39 25 63 79 72 58 47 56 55 95 30 99 89

76 80 74 2 55 80 77 54 97 22 99 41 31 9 62 42 95 71 75 24 99 99
69 79 48 64 42 12 31 68 16 88 44 43 17 79 66 34 86 8 21 79 37 5

35 14 80 999 15 72 45 17 63 9 59 54 74 32 83 34 46 60 30 82 78

24 87 29 98 20 10 57 8 19 75 29 53 52 48 43 71 62 12 31 72 78 23

50 79 34 1 92 83 3 86 76 94 57 35 20 71 10 39 79 76 27 33 15 26

18 16 23 66 999 35 7 25 27 2 37 81 93 2 33 36 12 19 4 59 18

73 60 66 6 31 82 52 49 70 93 62 22 45 49 35 36 49 43 39 64 46 84
54 51 37 44 85 45 4 18 70 0 94 21 73 67 55 41 56 71 58 16 39 34

18 51 76 21 51 999 87 12 11 80 45 94 75 93 85 88 90 26 67 99 42

27 26 75 14 86 47 54 98 61 41 10 82 23 95 90 77 77 24 9 23 18 70
32 19 20 24 24 43 25 88 44 82 0 68 72 95 72 69 19 26 66 29 70 10
86 85 0 96 51 89 999 61 82 39 79 85 89 81 46 2 96 50 88 85 6

33 26 94 89 98 75 6 95 53 27 8 90 6 60 11 18 86 3 97 27 99 55

(C 10

81 59 32 23 62 33 15 4 20 68 67 61 99 98 86 67 53 53 54 28 80 86

88 28 43 55 80 69 9 999 57 55 87 28 50 86 41 8 98 46 14 87 41

29 20 12 52 66 16 38 59 58 47 37 85 6 62 23 31 27 43 85 30 5 93
49 26 42 7 3 27 2 58 6 2 3 68 52 73 70 59 93 47 76 12 28 73

74 41 32 45 70 98 8 32 999 87 32 13 28 51 10 48 16 52 79 83 37

29 84 68 7 4 38 59 28 4 76 65 57 79 6 94 39 9 57 27 41 8 57

36 66 27 24 35 84 66 89 64 43 67 36 76 64 45 25 92 21 66 70 56 37

77 4 48 31 1 97 90 59 80 999 63 13 69 33 9 87 81 54 33 78 92

1 41 52 74 42 95 96 56 2 79 40 8 0 11 47 83 52 41 4 84 55 71

21 69 90 40 93 45 67 90 0 68 4 35 71 98 18 88 55 71 44 70 86 24

80 44 55 29 0 69 42 2 26 43 999 84 10 4 78 37 46 25 41 87 95

99 36 2 89 97 85 96 47 13 64 61 95 94 83 51 51 96 43 40 98 19 7
37 75 9 1 98 6 52 69 7 72 38 83 80 89 11 61 63 77 16 32 27 62

17 75 65 35 16 40 98 44 36 22 65 999 98 24 8 90 78 48 55 43 45

89 93 39 71 97 29 50 91 49 27 78 58 69 72 30 82 60 90 79 8 84 52

32 46 53 8 86 7 50 50 61 33 45 44 5 31 97 36 23 66 32 24 70 69

70 59 5 32 13 76 76 50 71 94 81 35 999 96 4 93 95 65 38 67 64

20 56 70 57 25 94 35 22 37 11 57 16 16 19 88 2 18 31 80 22 50 47

38 88 70 9 45 75 72 72 85 9 84 4 24 1 32 88 17 19 61 33 89 39

72 40 92 50 70 70 76 36 7 76 4 71 82 999 25 75 99 94 7 20 18

28 48 85 34 78 34 14 29 23 45 46 42 45 75 45 81 24 62 52 64 4 48

2 26 92 36 78 19 84 64 56 13 64 65 33 94 24 47 50 32 59 28 74 53
75 48 86 38 85 90 20 1 72 64 26 39 84 45 999 80 75 71 30 57 28

96 15 86 72 4 47 65 84 33 73 79 92 78 46 72 43 82 94 23 73 47 59

57 36 66 36 71 99 60 30 66 37 13 8 50 55 92 87 74 17 93 61 34 75

42 93 35 27 68 59 38 95 42 5 19 54 62 18 3 999 55 54 55 76 61

26 11 98 57 67 54 46 7 12 55 38 6 91 50 90 62 82 93 69 42 99 71

51 41 25 42 61 59 33 97 91 92 71 69 1 49 45 68 25 37 84 3 24 85

58 40 66 31 52 15 83 16 76 64 38 54 58 53 57 58 999 77 49 62 70

36 48 92 26 82 54 2 69 23 70 56 35 78 92 71 60 62 69 81 43 28 89

48 87 53 70 35 90 79 39 54 40 97 32 35 81 71 36 86 38 0 40 90 78

91 33 60 16 16 80 59 12 19 21 92 17 26 6 70 86 29 999 61 47 92

91 52 58 99 47 69 29 23 76 11 81 88 77 91 70 42 43 55 72 36 85 69

31 28 13 84 32 1 29 46 33 22 36 28 84 18 77 81 62 81 29 6 18 71

89 99 81 28 58 22 13 17 99 8 37 80 7 84 86 21 14 23 999 51 8

10 97 34 11 7 65 34 9 65 90 48 53 81 21 57 68 65 94 66 24 71 83

29 8 54 99 35 20 29 27 86 1 12 78 59 70 85 48 5 13 7 21 85 92

51 20 73 67 56 67 82 13 23 73 44 58 92 76 69 99 52 87 37 999 25

C- II

62 76 9 83 97 27 82 78 3 35 70 34 98 32 54 73 47 20 74 36 74 54
94 85 77 48 49 55 72 73 85 52 1 14 94 30 1 97 50 65 53 55 14 88
94 22 67 47 74 17 18 33 20 43 6 53 55 26 62 6 46 85 58 93 999

A solution to the 65 city problem is:

1-60-5-38-14-6-25-58-36-57-59-23-49-63-42-4-8-48-44-52-18
-27-53-13-7-55-31-21-50-32-30-64-24-10-12-61-35-40-19-37-65
-9-39-22-45-28-17-62-41-29-56-26-47-43-51-33-20-3-34-11-16

-2-15-54-46-1
at cost 136

C..5 Problem nlOOa

This is the cost matrix for problem nl00a:

999 23 8 24 40 29 27 43 13 17 97 96 61 44 36 41 89 57 42 73 8 76
38 14 69 77 55 72 78 96 73 35 52 81 27 14 66 52 67 25 37 13 4 64
50 69 36 51 66 61 81 33 30 7 49 56 9 3 13 57 90 3 47 3 83 13
80 74 7 73 35 77 40 54 6 49 91 94 46 99 98 55 45 19 68 81 16 75
11 85 62 2 27 11 15 50 94 64 93 12

83 999 80 99 1 43 83 48 73 61 26 21 95 38 93 98 47 31 31 83 27 63
91 98 24 44 26 24 21 57 61 3 88 32 25 87 35 72 93 12 50 23 73 7
50 5 73 52 90 85 64 26 37 91 71 61 62 45 20 52 94 75 74 26 51 77
59 15 26 87 56 59 79 26 5 74 12 56 39 54 39 78 42 8 35 54 51 34
12 55 31 65 91 20 57 14 72 55 27 98

23 79 999 87 29 84 1 56 56 6 78 53 2 78 41 94 23 91 13 8 43 22
13 53 93 3 65 42 36 11 29 9 6 80 76 55 34 41 96 23 7 90 63 85
62 11 90 79 22 80 62 29 23 0 12 18 54 58 85 75 62 84 36 76 38 59

7 36 30 19 48 65 13 66 68 23 16 62 26 86 48 46 97 15 49 71 27 84
61 60 21 82 13 91 38 1 49 58 35 89

81 36 72 999 8 80 69 53 33 50 15 36 35 39 78 49 86 10 86 19 73 55
82 84 3 12 29 79 84 25 15 25 55 31 38 41 38 13 43 76 61 98 71 21
74 89 94 14 33 67 81 99 5 98 34 82 60 65 9 85 88 4 6 40 18 96
56 6 7 72 36 36 35 98 89 36 82 56 60 93 1 94 84 31 30 51 38 96
51 15 67 7 10 91 45 13 46 36 10 72

64 77 68 22 999 61 35 49 17 72 18 43 17 14 4 7 60 94 94 13 5 57
86 27 71 74 79 86 79 18 55 77 62 53 44 0 36 93 70 19 57 48 84 79
23 40 90 55 54 74 7 55 54 73 5 69 61 68 22 19 6 59 96 19 17 82

9 59 74 0 1 23 96 13 22 49 78 30 50 86 91 77 58 97 95 72 82 61
9 79 1 10 63 44 17 58 28 58 8 49

67 61 41 74 89 999 36 24 67 19 81 29 14 73 40 7 9 38 42 32 60 32

C-12

20 20 27 85 27 48 33 35 14 29 42 15 5 46 39 48 81 74 23 49 69 11
74 52 31 78 69 5 19 14 45 98 38 11 8 81 42 95 40 67 86 92 54 87
40 12 74 66 7 20 8 8 85 92 59 63 46 82 60 80 82 61 48 26 11 34

2 86 1 8 68 67 34 72 2 83 22 42

91 54 39 98 54 1 999 2 75 11 59 48 29 2 46 96 22 25 20 40 5 58
41 34 80 19 32 85 7 9 5 18 90 22 40 1 4 65 36 68 10 0 43 26
82 20 91 0 79 89 1 0 68 67 89 15 48 91 73 95 92 35 59 9 79 56

5 41 62 18 87 50 84 48 39 72 68 44 36 52 97 2 40 89 90 57 2 64
86 35 23 18 82 16 17 27 77 4 81 42

56 60 65 57 33 69 52 999 33 73 80 5 85 48 90 62 36 69 60 61 51 51
55 29 4 58 56 82 79 59 97 15 49 57 6 11 17 60 95 41 94 71 67 84
18 49 92 74 37 60 49 6 58 71 79 92 66 61 31 31 22 15 89 75 37 71
86 39 33 23 80 79 67 35 85 0 45 22 8 1 79 42 66 51 78 54 60 26
15 57 94 3 92 71 24 78 79 89 28 61

58 44 2 93 59 94 86 10 999 43 36 59 86 19 57 29 43 22 80 64 70 93
39 64 6 72 1 32 91 11 98 66 24 24 29 27 60 11 2 95 76 68 98 51
89 41 3 25 27 79 41 89 42 2 28 33 53 59 51 99 3 33 44 74 40 78
56 77 75 27 76 6 22 92 98 50 91 93 74 78 53 17 73 14 10 78 30 33
87 29 47 0 49 40 33 62 94 78 82 27

18 70 24 53 79 30 63 43 19 999 18 20 89 37 19 84 44 99 86 86 69 21
73 87 99 85 25 62 84 69 97 72 42 18 5 10 43 7 78 97 34 22 93 86
92 62 51 25 5 12 54 92 47 34 28 16 48 52 12 23 28 14 90 32 8 90
60 98 20 39 50 47 55 63 53 45 29 48 19 30 43 73 74 72 17 74 78 50
19 38 88 33 52 84 55 47 67 67 23 4

1 6 36 71 59 59 71 23 15 12 999 15 1 28 59 33 6 62 90 23 53 77
18 2 34 26 96 73 9 50 32 49 8 40 73 5 36 49 45 43 77 66 42 76
52 86 94 52 69 74 98 70 61 5 52 38 27 84 5 4 54 41 86 55 14 31

7 44 81 20 70 33 23 43 92 86 41 28 52 47 63 50 48 48 22 75 17 3
76 40 67 23 26 16 48 88 85 5 9 51

27 26 4 32 69 72 53 41 2 91 32 999 30 83 56 59 92 92 15 8 6 33
41 71 83 49 4 87 62 79 34 82 36 35 39 2 65 15 55 46 88 41 29 44
76 13 66 85 56 3 77 1 87 14 40 41 20 50 87 26 15 79 27 62 59 7
49 66 15 20 31 29 16 79 24 84 25 32 59 78 37 62 98 98 77 22 95 67
13 71 7 1 51 92 30 22 25 56 42 52

36 6 80 30 97 45 75 32 83 14 51 26 999 50 55 36 8 45 95 72 12 59
95 59 37 44 56 65 97 51. 6 89 69 6 84 50 72 82 73 38 21 80 21 98
54 85 77 77 33 51 20 6 65 98 45 59 41 20 61 87 64 78 21 14 4 1
26 97 51 4 44 57 35 49 10 61 50 15 27 56 88 87 48 37 24 21 91 80
70 43 96 96 94 76 77 1 69 31 27 14

96 75 82 33 73 49 34 71 41 28 23 34 42 999 8 61 13 85 61 43 80 35
7 42 24 32 41 22 54 89 98 81 68 2 87 51 53 87 38 67 67 83 87 15

57 46 35 57 18 43 34 55 77 97 66 1 80 85 81 52 30 76 2 34 63 34
11 27 60 46 38 10 92 5 9 5 95 37 15 2 77 30 4 21 42 99 40 74

(U 13

42 98 15 67 75 57 77 32 7 23 68 25

52 37 97 59 27 34 86 63 7 34 30 82 17 11 999 46 82 67 37 47 85 60
82 77 47 95 44 49 73 49 70 57 75 53 33 0 34 25 67 26 42 73 10 22
14 38 21 17 87 32 60 97 18 93 17 12 80 45 70 43 86 7 74 91 12 1
21 91 15 79 31 48 34 93 20 63 39 80 25 52 90 10 63 3 81 65 16 19
97 74 82 82 27 75 3 30 48 62 10 78

10 20 58 53 76 59 72 27 55 87 94 68 28 92 99 999 36 78 13 62 0 4
80 13 83 72 16 94 14 70 22 23 32 15 48 49 56 10 84 59 44 55 44 97
97 9 21 31 70 5 71 36 80 51 21 78 30 98 98 82 30 12 55 36 90 90
71 68 18 57 35 20 46 27 1 5 83 85 71 12 34 82 53 89 58 96 76 81
35 67 61 8 79 44 93 42 52 87 69 50

47 48 99 84 95 47 88 22 13 52 98 77 31 88 38 5 999 84 9 45 7 73
72 86 75 41 19 18 52 46 45 95 95 99 57 59 62 13 87 36 89 28 14 80
46 51 33 82 37 51 0 84 59 17 60 55 24 11 62 71 95 31 6 36 8 41
99 44 51 57 11 82 46 12 19 19 24 55 48 10 5 70 55 69 26 71 13 94
62 30 7 49 18 32 29 55 92 90 66 11

94 10 7 0 99 28 22 38 31 63 24 52 96 95 39 1 12 999 66 98 62 33
54 99 35 18 0 37 87 52 73 58 69 59 21 26 40 95 89 57 49 42 94 15
46 66 63 56 67 7 35 43 60 78 82 26 1 10 20 44 1 27 36 18 85 27

2 42 21 75 87 31 84 13 29 95 31 4 22 54 11 53 38 3 58 77 63 84
75 26 72 56 42 57 97 36 79 97 29 90

31 17 25 63 99 53 48 37 23 1 35 61 29 42 62 60 70 40 999 61 13 74
19 0 42 95 51 28 70 59 54 73 97 2 69 56 15 71 21 26 38 38 50 79
73 77 17 32 20 75 14 83 61 69 89 11 27 11 16 47 62 58 33 71 17 2
42 48 21 67 61 36 84 69 10 10 70 96 70 64 17 29 12 86 52 51 22 10
29 86 33 48 58 95 55 54 28 72 84 45

62 6 2 14 92 42 73 31 4 17 82 5 41 56 16 38 22 7 89 999 64 25
48 9 76 83 77 55 88 3 23 12 6 95 67 56 59 2 27 4 59 35 92 49
68 14 56 78 91 47 70 43 7 55 70 25 86 70 2 22 30 7 71 41 4 82
79 54 37 82 95 31 94 3 61 49 93 78 98 l5 72 79 65 58 96 15 26 92
51 61 22 63 71 62 40 24 26 64 27 8

69 24 90 85 76 87 56 17 88 2 57 37 58 81 77 26 94 93 30 27 999 55
9 43 34 65 53 90 44 6 93 24 87 18 48 97 94 32 13 94 66 84 86 13

39 40 91 5 18 87 5 1 45 61 10 63 44 61 24 22 90 89 61 97 38 34
66 70 94 31 11 13 66 82 50 86 39 56 91 9 94 97 27 63 26 15 32 96
84 75 75 39 81 38 4 66 66 70 82 35

19 92 59 43 33 45 10 64 91 88 71 1 99 1 58 81 91 7 91 84 67 999
51 70 17 5 59 34 71 86 5 59 59 34 48 7 3 2 98 42 11 18 0 29
49 93 50 28 85 23 9 75 22 52 28 61 40 19 5 39 9 70 85 23 78 77
75 17 29 61 97 78 28 41 38 42 78 54 18 88 85 75 74 84 59 52 10 96
60 83 80 15 30 71 16 21 1 52 1 91

50 83 30 78 22 54 92 31 66 12 46 49 24 2 34 57 65 30 3 15 69 83

(-I,

999 63 69 40 97 38 96 42 94 61 10 80 19 12 30 37 81 34 86 47 15 69
53 54 25 33 16 70 34 69 50 32 82 15 83 70 67 53 50 23 75 12 62 93

14 24 78 21 49 82 48 76 94 88 94 63 99 98 20 21 97 69 92 52 73 48

52 0 25 91 41 99 4 50 47 48 55 10

93 67 18 34 61 66 34 35 66 12 16 34 36 22 34 30 95 1 18 46 39 39

60 999 48 26 34 20 54 73 25 87 9 41 66 85 2 49 15 34 34 15 0 65

97 14 33 46 74 34 95 45 48 58 9 51 86 18 64 99 53 56 97 33 58 76

81 77 12 44 45 78 12 54 30 42 82 40 35 21 86 44 51 85 66 95 64 22

23 19 30 19 19 88 86 73 61 84 22 95

38 54 99 3 54 15 80 69 6 12 62 57 85 90 59 34 34 80 7 54 47 30

74 53 999 39 41 74 36 13 7 61 34 29 63 41 96 47 30 98 45 61 72 76

12 13 29 13 61 90 51 62 75 44 75 18 15 46 27 64 65 44 78 80 94 88

31 95 30 5 15 38 95 54 1 56 22 83 71 16 29 27 89 14 32 56 70 49

52 20 98 80 61 11 26 65 44 93 93 33

24 38 54 90 53 7 27 34 46 67 61 72 75 12 86 61 89 28 27 95 9 25

85 2 35 999 69 5 42 84 37 31 88 54 90 19 85 47 85 86 39 20 68 64

26 66 99 42 1 63 67 46 89 38 61 98 31 24 4 28 41 17 95 32 79 45

67 74 27 76 39 54 45 73 55 6 60 7 82 33 9 21 79 91 69 49 94 83

90 75 65 67 97 47 53 91 46 5 35 11

88 72 27 19 90 12 24 40 96 33 37 79 57 12 93 82 45 96 82 2 90 56

95 54 51 11 999 12 85 53 61 94 82 48 72 26 13 61 98 2 10 93 16 25

8 1 7 12 98 0 31 77 21 65 88 76 81 81 48 52 63 52 89 42 63 60

44 23 8 38 42 14 88 51 65 14 56 21 58 26 17 22 37 75 18 7 75 42

32 73 99 68 51 16 86 37 89 10 54 88

52 86 73 16 69 38 52 56 39 18 2 96 34 68 34 84 47 90 68 97 83 82

71 33 82 7 99 999 36 26 64 76 35 37 27 38 24 79 67 51 82 13 15 63

10 76 68 79 91 37 48 43 42 70 4 72 71 5 11 56 58 60 22 14 60 98

71 33 21 33 80 73 6 9 24 79 51 61 96 60 1 60 68 20 41 56 71 15

49 2 31 42 20 5 18 7 73 13 85 75

52 71 99 27 81 5 77 9 36 99 23 31 94 0 94 9 86 95 56 8 48 6

96 89 70 3 33 28 999 28 33 21 32 24 96 83 59 18 83 30 58 77 95 29

19 69 81 58 67 37 2 1 29 64 89 88 48 52 19 84 19 29 21 55 18 78

34 92 81 31 73 28 89 49 46 34 13 99 35 44 72 77 16 56 61 41 67 81

51 5 14 90 23 94 83 20 72 50 39 31

40 89 9 70 11 25 38 95 75 44 6 65 52 26 71 76 81 98 96 66 55 2

6 43 82 85 33 34 43 999 72 57 71 16 3 73 8 86 41 20 38 33 39 14

47 50 34 25 53 39 40 80 91 27 10 72 43 8 10 96 39 5 39 58 23 26

66 51 86 26 96 36 69 14 1 55 U0 62 43 31 52 87 82 26 28 24 27 84

27 14 31 4 66 78 80 43 73 85 18 44

36 62 56 82 55 78 94 64 3 69 62 66 7 4 89 56 69 17 15 70 69 79

14 34 99 69 51 37 76 46 999 79 24 11 74 10 22 12 94 62 91 13 38 94

69 96 10 1 65 95 63 66 90 83 83 12 4 79 66 71 86 61 60 48 44 85

63 85 72 53 89 96 27 92 49 44 98 98 26 46 56 41 5 2 56 88 43 56

(-15

43 0 14 57 35 58 80 74 94 24 44 67

12 68 32 1 35 50 4 44 48 65 4 23 79 99 99 73 44 8 75 23 87 16

4 25 52 41 61 80 43 11 85 999 73 14 83 22 60 93 82 20 22 98 21 98

85 56 49 90 31 21 8 61 5 52 98 45 50 1 17 23 12 38 22 40 51 6

97 60 6 83 36 67 37 56 63 67 64 57 59 5 22 49 86 56 42 26 6 0

9 34 70 91 88 33 86 42 12 47 14 81

51 70 84 64 46 90 90 96 67 52 86 25 20 47 16 77 49 40 92 14 38 99

20 21 40 91 86 49 65 19 42 89 999 19 55 90 16 68 60 41 79 55 98 8

9 34 26 45 47 95 72 61 50 72 68 92 3 22 20 61 64 45 96 98 21 17

52 35 46 21 85 31 76 0 19 27 42 31 92 21 51 56 37 40 56 45 8 17

0 24 68 77 44 58 48 65 84 30 50 90

59 51 11 73 10 17 55 98 87 48 43 0 47 59 31 9 97 14 77 30 69 54

94 14 65 34 69 3 51 90 13 47 14 999 66 9 24 45 75 19 66 60 13 37

43 59 77 89 40 25 10 94 73 8 38 32 10 81 33 45 8 61 76 17 90 20

44 10 77 42 50 33 29 62 54 88 16 73 30 57 93 39 51 66 94 77 42 60

95 38 85 90 48 91 17 78 87 36 ' 4

99 96 1 61 45 45 94 41 89 28 49 57 48 23 26 67 7 39 15 32 47 96

76 41 63 84 85 56 99 38 28 41 26 40 999 1 13 53 11 22 64 41 70 83

54 42 81 83 91 6 94 20 42 76 66 27 98 34 49 31 55 5 23 66 31 34
37 70 40 89 15 21 18 17 67 92 89 66 3 33 27 18 39 34 31 37 76 53

85 44 65 92 87 41 70 30 40 39 87 40

34 37 94 9 57 39 12 47 44 0 90 89 24 10 9 45 79 15 43 35 86 81

12 80 3 63 76 44 97 26 91 58 67 73 70 999 28 62 97 4 5 80 80 0

22 20 21 37 25 79 76 63 17 77 41 3 90 5 87 56 63 91 54 17 17 14

30 51 54 37 58 71 34 n7 62 72 38 84 96 26 21 61 14 50 70 94 25 53

96 32 46 43 73 64 87 0 56 33 59 28

93 49 54 46 46 75 27 67 3 76 17 45 98 38 76 75 0 65 67 11 51 31

30 20 55 93 25 12 65 54 36 9 79 24 61 65 999 36 34 74 93 45 80 6

65 67 62 30 51 40 78 81 28 26 C4 85 56 56 74 76 90 74 51 89 55 12

45 91 91 45 38 59 8 62 8 89 58 86 93 0 84 89 81 14 20 99 29 10
70 18 99 89 5 67 6 2 78 22 88 97

28 96 59 94 26 44 32 65 97 25 3 67 58 73 13 54 76 35 7 61 30 14

52 10 66 69 81 20 36 35 24 33 13 90 81 79 75 999 12 16 71 22 0 39

97 12 85 8 93 80 74 51 51 93 80 76 65 80 25 42 34 48 8 15 29 81
11 28 3 34 49 80 81 - 45 91 80 34 45 24 96 87 39 23 42 30 83 41

49 55 52 66 95 39 24 8- 52 5 19 99

9 4 72 76 77 31 70 26 95 97 72 79 30 85 99 96 92 66 20 42 95 68

21 9 78 27 4 42 75 24 57 8 60 95 61 11 78 67 999 68 83 42 92 15

83 7 99 2 18 8 72 51 35 73 31 46 35 76 80 28 66 72 10 14 73 14

46 56 87 76 97 42 16 42 28 86 42 3 84 79 81 58 76 99 99 61 86 55

80 70 45 72 88 29 8 62 56 79 71 28

98 99 65 12 51 73 96 60 50 6 1 39 85 27 8 53 76 41 84 26 96 69

58 43 69 65 89 80 63 17 6 82 30 15 18 13 94 1 9 999 10 96 4 41

6 6 89 33 97 64 3 2 13 39 96 40 46 91 40 34 69 44 18 4 49 29

1 36 53 87 13 26 72 96 62 32 15 64 10 57 10 57 71 22 53 45 67 26

48 35 86 86 69 85 89 36 95 1 32 36

26 87 85 27 14 90 11 3 19 55 9 91 73 5 75 96 61 22 54 73 83 37

40 90 40 23 58 22 42 76 92 1 8 95 81 9 63 46 27 18 999 46 82 94

48 94 53 21 39 35 57 13 52 77 61 8 93 17 67 45 71 50 79 5 16 15

81 90 88 47 24 18 35 75 27 25 91 9 5 47 35 16 80 29 19 54 95 40

76 17 67 90 39 5 94 31 64 82 30 18

94 56 76 69 93 95 13 91 73 89 25 3 73 95 62 1 83 40 23 55 54 7

52 58 64 57 98 3 2 90 70 63 14 12 14 34 85 46 39 95 25 999 31 2

40 37 10 50 89 4 85 53 9 43 96 94 96 45 86 57 60 13 99 69 44 77

64 42 ' 82 12 15 0 99 98 50 83 49 78 2 5 57 37 85 99 28 44 73
80 19 38 68 41 21 48 71 70 73 60 24

87 49 24 91 24 64 83 10 58 0 63 16 85 70 78 46 59 60 55 45 2 53

19 51 1 83 26 32 99 38 11 83 10 24 95 96 39 8 10 17 3 43 999 8

69 18 56 82 22 95 92 80 73 46 88 2 53 89 23 69 47 21 59 26 37 52

75 49 35 71 33 31 65 89 72 6 81 51 10 22 27 54 11 20 3 85 58 54
16 98 95 88 58 71 72 8 92 62 41 57

50 38 30 29 5 28 79 61 45 16 13 37 99 84 6 50 18 77 7 40 3 93

98 80 48 13 38 27 86 59 94 8 34 75 72 17 85 68 23 24 31 37 32 999

24 68 9 0 68 77 40 70 56 6 9 21 53 40 31 60 49 9 67 39 97 51

78 49 39 40 34 64 28 52 58 47 83 92 22 81 76 18 77 95 25 44 54 94

30 4 61 67 66 19 82 19 42 41 95 37

2 36 84 99 17 32 11 27 6 53 21 42 26 51 13 51 41 95 8 123 44 83

0 98 40 58 40 74 33 56 94 95 79 63 52 91 51 71 53 23 52 96 80 43
999 56 2 30 21 18 93 56 41 47 96 94 18 93 35 49 82 42 88 36 36 34

39 9 69 69 41 59 72 74 21 6 74 8 65 98 78 40 36 20 42 66 40 49

34 78 46 54 52 59 9 99 18 35 70 95

32 23 94 61 61 55 57 84 34 79 18 8 5 88 46 30 49 11 56 93 10 10

51 38 30 82 27 89 92 41 26 27 80 79 21 79 27 81 90 28 48 72 7 72

10 199 6 36 53 61 71 22 4 27 70 98 57 95 92 65 61 83 76 1 91 46

51 64 90 93 94 69 36 82 44 93 94 50 98 15 61 47 85 31 19 84 2 31

7 28 16 89 28 10 98 48 77 34 0 30

56 0 34 98 34 32 63 44 30 29 35 17 98 42 67 83 99 94 77 54 53 8

63 69 60 38 57 15 52 43 30 42 99 39 11 77 60 97 40 40 93 74 18 99

49 15 999 32 54 55 92 69 27 1 88 53 59 11 17 70 74 30 45 96 66 26

50 91 29 22 9 41 33 18 93 79 49 33 37 6 64 91 31 76 38 93 83 54

13 28 15 49 57 74 45 99 8 33 62 6

8 98 5 3 23 24 15 9 11 10 80 30 73 95 42 30 35 80 10 81 69 11

51 69 56 40 14 18 50 4 18 54 89 6 16 17 46 62 15 2 89 12 17 59

53 84 82 999 92 57 14 56 63 37 48 61 3 19 68 61 51 86 48 15 93 75

36 15 17 86 25 89 43 47 43 55 45 84 88 54 86 33 87 73 7 71 51 2

('17T

54 26 45 57 36 49 60 64 80 96 50 5

52 34 6 86 19 8 12 35 15 89 33 46 36 68 32 13 39 33 85 77 24 77
99 14 62 19 56 98 34 6 15 23 18 60 14 2 12 54 65 68 18 2 30 31

57 1 84 43 999 57 96 73 11 7 36 62 73 96 84 76 64 40 55 4 76 90
39 48 20 99 96 56 63 46 98 11 0 66 47 83 6 77 76 55 11 31 90 42

14 55 5 80 62 78 13 91 5 25 90 60

72 55 97 76 99 34 60 33 30 75 76 45 66 33 29 99 2 54 21 16 79 67
56 52 77 92 50 62 48 59 11 62 11 21 23 21 21 3 18 6 44 59 50 54

12 31 91 89 27 999 62 35 31 83 75 18 65 9 89 24 4 52 7 72 51 36
33 57 92 76 85 38 28 55 91 26 98 6 27 70 38 14 7 98 75 7 0 82

10 77 6 20 9 91 34 23 14 68 55 46

63 12 28 37 22 22 75 84 10 40 27 54 5 40 3 4 8 65 46 18 35 53
78 82 9 9 84 18 22 78 18 95 80 78 87 36 96 93 11 0 89 77 81 2

78 4 96 2 94 73 999 C1 1 12 57 39 50 40 87 12 94 9 54 15 37 26

89 39 97 14 97 58 74 7 13 50 88 65 51 59 73 70 50 76 51 34 31 47

84 11 36 92 91 27 69 2 26 57 66 67

65 65 17 80 98 8 77 81 59 62 12 63 51 11 44 68 63 47 28 94 76 37

72 69 98 14 47 66 15 34 24 8 88 56 50 67 60 44 36 31 70 54 72 13
1 29 12 24 43 21 58 999 6 42 2 76 14 5 68 95 24 80 55 20 6 58

83 47 37 36 68 87 36 91 79 30 41 79 44 38 86 37 79 13 97 54 98 32

1 53 3 73 24 89 94 37 57 47 66 77

43 66 7 65 84 92 67 70 7 33 80 76 67 71 37 35 19 48 53 22 55 53

29 58 77 70 58 67 0 31 13 23 33 46 61 39 70 63 69 29 38 3 34 17
34 75 28 87 18 51 4 33 999 15 31 73 77 24 79 31 31 24 66 52 90 82

99 66 8 7 62 57 27 91 93 4 50 29 95 10 14 68 49 22 50 67 18 52

42 1 28 65 20 29 48 68 65 35 43 30

44 86 26 92 67 18 27 32 33 77 81 93 79 78 89 19 96 9 54 68 86 80
57 53 27 62 85 68 20 59 53 70 84 49 4 20 73 2 25 61 26 18 26 89

27 51 6 79 56 85 59 51 21 999 88 66 25 75 20 56 12 12 60 60 37 67
46 82 51 18 24 98 76 20 36 70 59 60 52 1 90 88 25 92 16 46 57 46

19 61 43 23 52 80 68 29 90 34 41 61

40 25 28 20 31 43 94 93 42 94 13 31 81 48 63 23 99 77 45 15 74 12

54 20 92 17 11 13 92 24 52 13 71 70 85 54 88 92 72 15 94 60 94 78

50 27 55 98 60 51 6 83 71 89 999 23 25 V3 66 51 90 44 14 33 90 49

14 4 55 10 94 64 4 37 46 86 51 35 85 35 7 48 15 29 88 60 23 95

88 70 19 6 33 19 79 28 52 28 1 49

77 37 50 40 0 81 53 10 87 79 15 81 12 97 10 94 92 99 46 37 43 95

57 33 74 66 64 55 67 26 90 51 58 77 87 21 87 25 68 49 80 62 12 53

22 1 87 48 17 82 55 55 60 60 8 999 47 38 32 11 48 14 78 29 7 35
10 41 6 93 21 64 21 83 41 5 61 54 71 87 68 77 79 85 74 20 81 19

93 7 ' 3 56 83 40 83 73 69 93 45

40 85 14 28 68 76 71 89 23 98 43 28 94 13 26 37 29 47 27 86 83 26

U-18

57 86 70 37 60 31 40 14 13 35 19 45 66 69 66 67 83 28 40 59 42 57

61 25 1 46 6 9 88 62 57 94 8 40 999 99 15 71 42 58 83 37 46 15

28 31 42 89 20 15 91 59 81 78 60 38 41 21 81 98 82 14 10 18 77 35

82 31 67 32 63 9 48 32 46 47 61 16

59 3 26 39 74 77 52 89 49 57 78 75 81 52 86 72 83 67 94 49 63 34

19 86 98 73 41 39 76 52 90 85 45 8 71 1 80 34 0 94 49 9 81 54

82 58 81 54 16 67 93 30 99 23 73 67 32 999 59 86 71 7 42 93 23 11

2 66 86 9 18 1 5 7 87 89 90 93 85 39 5 29 15 13 66 43 27 39

67 68 7 3 45 80 44 31 68 54 43 11

19 98 32 35 91 84 11 97 55 85 21 40 59 59 35 88 49 51 85 70 24 27
53 0 84 2 67 41 86 17 20 69 59 50 57 61 38 59 0 97 58 3 61 76

74 30 47 77 44 74 22 31 44 17 96 12 84 81 999 99 65 24 69 52 98 74

37 89 81 56 64 3 37 10 86 50 42 93 13 70 63 54 0 74 60 10 24 33

37 9 62 75 24 90 21 60 76 5 33 3

38 12 48 64 24 66 15 48 16 85 32 21 23 86 22 89 38 34 58 60 94 0

88 76 50 76 73 20 44 58 43 24 83 26 78 27 28 17 65 59 17 4 96 44

98 55 63 30 25 80 11 32 66 99 4 66 79 35 78 999 80 71 19 77 20 50
74 71 27 76 92 49 2 36 59 64 46 14 78 48 6 53 68 58 2 59 56 26

52 63 69 35 43 79 7 42 6 73 21 94

5 87 92 82 9 46 19 48 36 60 12 36 9 98 43 95 58 39 58 96 24 58

40 33 50 57 50 83 15 70 85 36 56 75 26 76 94 92 3 41 50 52 86 87

75 16 63 99 11 32 66 32 83 0 95 40 68 13 12 43 999 55 95 76 0 46

42 5 16 47 28 19 23 20 99 35 66 19 30 86 34 74 56 42 18 48 96 6
78 95 87 29 35 17 17 89 7 65 57 77

49 77 55 36 25 9 31 31 33 73 18 51 78 55 56 23 37 13 68 30 53 93

75 46 6 38 44 44 64 73 8 34 96 3 46 36 27 78 45 18 50 15 23 55

34 26 37 18 5 23 79 49 21 18 33 6 37 70 96 82 59 999 56 80 36 40

59 83 97 62 82 56 12 20 67 68 48 79 22 93 74 43 34 64 65 25 96 77

97 43 77 1 29 37 96 15 16 34 23 27

82 13 42 14 70 72 70 23 36 51 8 13 43 39 49 41 37 89 77 47 43 72

70 63 39 21 41 82 76 33 91 14 75 49 78 54 51 41 39 26 50 66 47 81

82 79 85 64 77 90 9 79 72 77 6 62 83 24 37 9 98 25 999 37 88 52

21 2 An 87 '30 0 99 6 27 33 5 53 85 41 35 22 23 42 32 21 9 24

54 57 61 90 52 25 67 46 4 9 65 25

64 14 99 55 0 8 54 51 17 58 17 95 28 26 33 14 60 29 21 77 71 9
77 5 55 82 82 21 28 95 70 56 5 76 62 36 34 84 84 60 44 36 62 37

96 3 15 2 42 40 0 29 57 80 3 49 93 91 63 45 63 53 8 999 98 9
54 51 92 14 19 8 6 8 99 49 3 67 20 86 73 81 70 67 60 59 61 31

23 32 50 1 77 61 75 33 89 74 66 41

43 62 16 63 70 52 95 1 83 78 65 9 96 11 11 13 61 75 36 26 87 31

30 57 25 77 45 56 59 30 6 38 21 43 35 76 64 48 49 82 71 75 18 69
35 54 88 26 73 72 41 39 1 5 3 26 79 17 35 98 36 63 1 14 999 37

65 56 88 91 27 19 85 48 15 44 96 82 27 67 31 48 97 36 71 52 0 17

(U- P

37 41 87 74 6 82 86 56 45 52 80 S1

26 60 79 71 41 5 62 29 45 96 75 86 56 53 72 1 73 93 86 56 85 60

45 9 37 83 71 41 8 6 12 45 98 3 54 76 47 83 91 87 18 30 96 56

59 1 27 9 14 75 25 45 38 31 49 12 5 28 83 38 15 86 64 85 69 999
84 94 10 2 66 88 81 35 35 19 89 3 52 3 47 49 43 39 11 25 31 8

7 38 96 80 62 41 26 50 7 50 98 1

22 70 54 12 32 69 61 0 42 13 14 84 31 83 73 78 54 81 16 71 46 83
4 79 37 34 3 57 35 6 70 36 30 20 26 99 14 39 86 51 69 23 6 31

29 71 41 80 14 75 90 92 62 4 28 56 91 75 16 49 81 52 55 19 60 88

999 11 60 61 21 82 12 72 29 97 10 98 21 14 46 3 38 68 40 81 18 8

15 56 11 3 65 82 53 6 31 43 41 12

53 55 40 59 47 50 30 34 66 84 58 61 36 2 11 15 23 85 24 47 15 5

91 53 23 92 60 71 10 79 15 54 72 74 4 51 84 11 58 78 55 21 57 78

34 34 29 6 29 41 75 46 46 81 66 33 81 93 73 30 89 76 51 1 95 13

72 999 54 2 36 82 37 5 32 47 61 88 22 64 35 86 42 70 68 23 64 53

25 41 48 13 90 92 47 52 1 68 25 56

2 51 7 69 67 24 61 3 33 34 37 57 4 30 30 65 10 50 78 39 58 13

49 16 60 34 43 27 49 85 48 53 85 30 50 56 3 27 8 90 82 68 44 79

97 76 43 97 96 94 79 76 39 18 5 36 7 29 19 15 86 48 12 6 60 2

24 14 999 26 72 30 19 26 14 20 75 48 14 35 54 14 81 0 85 26 52 82

80 33 12 6 92 0 34 68 15 14 57 65

80 99 62 34 54 15 87 46 52 99 11 20 74 15 61 43 90 52 88 70 69 68

11 1 3 58 31 88 61 96 73 78 93 32 5 87 48 58 97 9 55 42 38 30

52 48 48 82 45 69 8 76 14 4 13 77 23 78 35 32 44 22 60 5 93 79

20 12 97 999 66 11 33 27 83 85 87 93 25 8 32 77 4 1 0 36 67 68

11 65 85 86 85 15 68 84 96 57 44 41

14 19 45 56 46 17 8 42 1 91 89 74 78 7 2 3 95 81 43 15 86 77
58 0 17 74 41 2 74 61 45 34 26 17 28 86 85 68 82 83 38 22 45 66

42 65 19 58 3 77 48 53 22 69 51 33 22 74 46 2 63 12 76 84 1 76

18 79 88 96 999 84 50 20 49 97 1 54 43 90 49 22 66 68 43 11 27 1

21 47 54 50 96 63 22 82 48 82 34 41

9 69 18 7 0 90 85 77 17 49 4 0 6 35 47 77 2 17 31 55 8 33

67 19 84 42 71 86 24 97 47 94 6 43 81 91 66 45 24 48 51 63 76 81

36 54 66 84 40 13 0 46 77 34 52 47 34 77 73 25 57 98 86 97 27 34
6 56 54 3 85 999 71 95 44 24 41 83 71 87 28 62 6 50 82 26 68 34

26 66 47 73 19 31 25 43 5 56 70 76

1 81 10 30 1 1 40 11 39 38 7 62 78 32 8 34 87 94 1 20 46 96

72 21 63 74 43 91 3 69 16 80 39 39 93 43 95 12 40 6 80 3 1 88

98 38 71 8 64 60 95 34 57 0 76 1 3 58 35 57 3 2 43 1 34 0

72 60 1 38 71 72 999 47 16 80 53 20 28 87 90 98 82 94 89 43 10 55

27 28 63 73 86 48 51 63 31 89 40 55

98 35 6 97 14 73 99 30 92 67 78 53 38 21 26 32 44 50 22 78 90 81

('2(1

77 17 69 83 68 88 59 93 47 71 29 40 40 90 31 70 10 23 89 96 56 99

76 40 69 34 12 20 87 16 3 76 68 87 55 76 1 6 8 81 53 2 40 25

87 90 95 62 22 85 85 999 27 54 3 59 16 28 13 88 94 87 49 25 14 44

52 39 31 90 78 71 3 29 58 67 94 61

82 43 88 79 34 67 43 24 72 80 53 65 68 89 39 56 93 73 7 20 6 69

11 35 66 39 49 93 66 3 82 92 48 14 69 6 5 76 25 46 27 34 2 17

55 10 92 96 36 73 46 26 67 78 45 91 72 41 32 68 42 87 22 10 82 81

69 65 94 35 49 91 86 13 999 28 32 86 3 49 61 74 49 40 97 2 82 92

48 39 36 71 57 59 12 10 1 47 51 67

65 13 89 22 57 79 46 11 30 26 33 38 36 72 56 73 80 72 79 73 45 79

89 35 38 75 85 69 10 12 33 56 58 2 61 49 34 68 64 10 11 98 56 14

98 69 22 12 28 91 60 44 53 77 95 8 61 44 3 24 45 15 70 12 35 18

63 98 72 27 64 63 51 77 2 999 34 13 5 40 70 42 97 22 17 69 55 18

85 59 65 9 27 71 70 6 86 34 7 56

64 45 32 9 55 98 29 30 13 10 64 37 7 28 13 23 75 50 11 59 8 37

34 31 93 10 60 86 79 66 75 55 12 91 29 67 21 47 42 41 69 77 31 10

98 67 19 67 91 6 12 49 34 41 31 86 71 47 9 90 71 87 9 89 98 68

72 39 7 36 90 93 12 26 32 54 999 97 56 83 9 9 82 94 25 34 64 61

70 37 26 77 97 90 24 26 73 78 65 19

25 38 76 71 26 50 65 65 33 69 61 97 57 96 11 38 86 22 6 47 97 31

47 64 23 43 55 56 40 71 62 68 28 90 86 71 31 89 26 65 48 65 27 74

36 53 83 90 5 31 75 36 70 56 42 43 49 19 27 93 73 58 63 86 52 14

68 32 16 31 65 72 63 43 42 81 22 999 12 19 8 17 37 59 67 6 13 62
89 94 17 99 48 41 18 68 50 34 79 92

18 42 8 1 67 81 80 70 5 73 0 31 83 94 95 18 25 39 33 57 50 6

54 72 85 95 28 69 34 81 32 76 11 21 86 12 32 34 63 83 61 71 74 23
47 9 14 24 27 25 77 66 82 74 58 59 96 39 28 82 28 66 67 46 52 11

19 33 61 95 30 28 78 8 22 90 72 37 999 74 57 6 99 5 20 77 18 5

46 25 62 86 83 51 28 26 71 6 30 68

27 45 31 27 35 81 99 63 58 99 19 42 40 53 17 69 81 32 89 14 62 37

35 69 44 99 79 29 27 20 6 84 48 52 82 82 35 47 9 79 74 74 98 63

7 44 52 56 99 49 79 58 79 87 83 42 24 72 60 46 71 2 54 84 78 22

89 41 39 7 84 79 82 51 83 61 65 47 95 999 47 84 6 9 85 82 51 77

97 81 75 50 91 29 13 43 84 59 32 56

90 1 81 27 42 13 89 53 7 65 50 55 54 6 46 38 22 25 61 45 25 94

18 94 93 10 35 20 24 21 97 26 33 15 13 88 6 65 49 89 22 37 98 23

20 30 22 91 82 77 37 96 47 2 51 4 27 62 6 89 15 93 4 7 56 55

0 67 72 88 33 34 38 47 22 12 51 77 24 27 999 21 13 88 58 47 75 61

94 82 8 21 35 26 91 16 44 85 67 29

52 8 96 83 4 67 45 77 49 48 61 50 6 74 55 77 42 40 35 8 14 30

18 92 29 25 96 94 12 64 77 39 49 41 95 73 16 68 85 74 78 14 91 31

57 26 30 24 76 4 35 89 12 51 35 59 92 11 42 43 60 19 83 64 75 0

14 25 85 14 64 74 32 75 67 7 44 41 10 37 77 999 12 88 6 39 8 11

(U-21

14 63 45 94 72 99 52 62 20 72 8 14

27 64 24 90 34 91 28 49 22 29 95 74 44 8 71 28 37 79 46 73 70 98
18 8 28 78 48 66 81 31 51 9 37 36 67 15 27 53 60 57 28 11 47 48

98 86 83 20 93 85 20 31 98 74 88 99 95 44 38 23 77 25 47 76 24 22
55 31 84 4 60 67 78 55 33 63 37 78 81 52 26 45 999 35 95 54 83 5

77 33 81 99 5 58 82 8 51 25 41 16

6 57 44 12 18 67 96 7 62 59 0 24 8 29 45 7 91 18 32 86 9 2
74 91 24 30 44 48 62 51 17 57 20 86 92 64 76 59 99 99 62 79 89 42

60 96 43 36 17 26 85 42 55 7 38 18 36 88 6 5 29 82 7 31 93 36

17 59 28 58 70 22 60 69 33 89 44 61 27 97 51 3 19 999 18 66 51 30

31 9 17 81 52 0 39 98 42 57 21 74

6 25 72 45 32 90 26 2 17 52 31 56 15 43 23 97 18 24 13 1 63 82
51 31 24 83 48 19 1 16 51 67 77 9 86 58 36 33 28 19 80 71 18 55
30 54 92 67 81 99 12 8 26 41 88 72 18 73 39 25 5 53 53 21 71 14

14 52 87 45 17 21 19 47 70 51 57 56 29 63 72 89 1 38 999 79 45 75

67 30 32 15 81 30 62 43 43 57 70 18

65 85 58 84 70 49 83 43 4 97 29 47 98 23 52 9 83 63 65 48 68 20
43 16 78 95 77 94 90 95 59 61 37 73 12 77 6 77 10 66 75 62 61 76
74 62 37 1 0 62 15 35 76 7 49 90 81 37 8 32 5 44 98 44 12 80

59 1 88 70 54 70 63 76 84 42 42 76 89 48 16 75 13 17 42 999 80 24

21 85 72 41 7 17 93 92 73 31 78 91

14 60 32 29 91 97 46 74 84 39 22 6 94 56 19 93 28 35 54 58 34 54
96 74 90 69 30 71 94 6 54 44 62 19 61 45 73 76 57 15 70 84 52 17
51 84 18 29 30 10 43 44 88 89 52 77 73 57 70 28 26 48 9 30 84 77

51 4 64 32 76 67 52 50 45 78 44 58 47 2 66 71 21 63 19 89 999 61

99 73 62 26 79 57 69 23 5 0 96 59

31 17 66 16 65 74 92 14 69 59 44 59 8 40 43 96 21 31 23 94 32 56

15 42 0 47 18 23 32 26 27 8 51 91 46 37 23 65 51 34 94 98 74 22
48 9 98 6 19 4 90 68 77 84 33 58 27 32 42 51 17 63 35 83 74 14

75 79 28 80 50 11 21 28 11 84 32 83 26 49 49 19 95 79 40 68 47 999

77 56 81 90 60 78 34 2 0 73 90 89

61 11 91 65 47 6 89 87 40 81 0 6 57 31 30 9 7 10 12 10 68 74

73 45 53 73 50 32 39 80 59 61 52 14 30 57 7 1 62 7 63 27 47 63
92 9 99 36 39 46 72 57 94 63 88 92 76 68 45 76 7 87 34 94 0 51
13 69 54 49 97 2 8 41 36 76 76 55 57 17 48 22 28 41 17 94 14 18

999 94 45 43 70 45 10 65 97 64 15 49

98 13 20 52 77 12 41 68 6 65 65 41 59 50 17 49 65 26 2 43 7 79

22 18 71 88 61 10 77 53 11 32 23 44 76 54 35 91 50 61 67 45 63 25

35 12 87 90 53 80 45 8 16 22 28 40 82 38 7 28 42 55 13 48 41 30
75 3 81 5 36 97 91 62 97 59 24 43 99 63 78 93 73 75 33 24 3 28

28 999 57 46 88 37 37 10 0 67 56 27

39 22 97 10 71 93 29 42 94 67 71 95 0 95 50 0 22 80 69 95 58 16

(-22

5 97 92 37 16 98 53 1 70 42 39 62 24 58 71 37 21 68 54 43 31 58

25 49 63 60 60 15 84 96 62 71 8 75 54 23 20 49 85 28 48 86 86 46

54 42 73 44 12 33 35 33 13 83 15 63 39 82 42 98 82 38 60 36 84 22

21 75 999 24 47 70 48 97 16 99 82 38

36 10 81 36 59 73 80 10 8 1 50 20 59 58 20 51 1 29 39 86 36 81

71 85 16 35 47 90 88 72 13 73 86 32 1 25 24 9 69 41 11 39 37 71

69 38 42 94 1 31 25 61 43 26 61 71 24 96 64 59 11 5 15 3 49 17

75 44 34 54 78 60 81 69 36 31 53 13 27 28 34 52 89 86 61 88 61 66

78 53 84 999 71 23 32 36 16 94 92 23

85 19 24 61 44 82 59 44 58 47 59 35 53 40 67 80 5 67 4 54 65 68

2 50 19 53 31 22 51 95 77 54 72 4 43 34 76 91 94 44 81 43 52 99

8 30 73 29 21 33 81 92 13 21 56 15 62 25 13 86 25 37 81 56 24 73

3 16 26 22 48 1 23 93 8 50 22 30 20 85 4 24 98 96 65 76 18 57

90 55 98 46 999 69 16 62 72 26 3 41

60 72 36 87 30 5 9 52 53 31 38 82 15 51 58 78 50 59 47 12 32 21

14 10 50 28 4 42 94 26 28 24 53 74 1 62 36 79 62 39 75 87 64 86

71 61 52 74 76 13 24 18 18 4 8 13 80 26 45 24 99 99 9 64 51 41

97 82 66 57 50 5 85 85 58 84 54 24 82 51 32 55 9 4 10 86 96 40

91 3 31 4 14 999 54 2 9 75 61 43

73 60 50 64 86 18 42 82 48 52 29 47 42 6 67 8 95 85 8 61 65 68

42 26 98 51 63 18 79 52 34 5 21 39 35 51 22 42 46 6 38 36 32 41

54 21 3 74 1 74 78 53 66 66 44 5 79 43 94 67 66 71 75 22 0 7

48 21 66 98 36 11 39 62 80 51 31 6 3 35 24 58 99 42 94 70 84 54

6 2 78 80 35 91 999 77 10 4 87 24

8 32 89 33 17 86 35 54 21 57 52 85 96 19 67 4 26 38 6 60 0 27

27 44 49 89 9 52 60 17 87 96 42 14 56 68 24 39 14 66 90 21 87 79

35 31 21 57 27 56 30 74 78 14 34 83 57 68 16 52 42 9 32 60 73 75

6 23 40 14 7 87 88 49 72 34 9 26 83 86 31 18 65 14 34 27 60 52

50 84 77 48 98 78 65 999 7 82 52 48

88 49 15 7 90 74 7 38 5 50 26 73 46 80 91 71 46 90 78 52 3 62

58 87 20 82 34 78 94 10 15 25 3 43 67 26 75 27 98 82 33 66 74 28

62 7 87 77 16 80 72 51 52 59 76 78 66 24 87 84 73 19 46 13 58 26

49 91 73 60 34 35 38 40 2 67 82 76 54 74 85 6 0 76 46 27 4 83

60 29 92 47 27 34 59 25 999 83 42 65

82 45 74 28 97 51 2 30 95 21 39 45 27 60 89 42 63 94 47 41 1 95

46 34 78 69 39 81 41 95 47 39 96 51 95 66 69 22 19 66 35 92 12 50

31 94 53 66 5 36 64 59 33 71 97 47 77 43 78 69 72 17 36 51 48 79

44 6 19 73 2 43 27 2 99 3 50 23 2 97 42 75 40 71 82 39 51 57

25 57 19 92 2 94 19 2 38 999 12 1

47 82 80 77 80 28 93 0 71 17 26 12 13 29 80 36 55 17 96 16 11 89

46 58 55 80 46 42 14 16 35 6 89 94 96 71 17 50 63 39 62 32 33 71

48 78 47 72 37 41 85 80 45 54 79 83 1 21 41 35 1 83 91 23 73 96

21 59 50 16 13 0 89 94 17 11 93 82 3 92 8 26 0 3 15 55 51 73

(-23

9 77 26 96 62 57 25 44 45 91 999 71

58 99 38 6 94 34 39 1 36 24 52 73 0 68 81 7 57 2 12 60 70 38

1 98 71 53 77 77 21 91 88 73 93 5 45 67 91 91 4 19 30 9 16 45

60 85 77 26 21 4 62 96 72 77 81 64 78 19 64 15 94 98 26 0 66 27

84 20 54 19 92 20 49 69 24 38 96 36 23 23 21 15 29 11 5 91 68 14

50 90 21 38 3 94 81 8 22 84 20 999

A solution to the 100 city problem is:

1-58-39-78-19-34-28-55-99-61-54-80-62-92-10-100-13-96--21-52-45

-23-95-65-63-68-70-84-82-66-16-75-86-49-77-69-94-35-3-7-42

-73-6-91-30-22-37-17-51-15-36-44-48-40-38-43-41-32-88-25-31

-90-97-83-93-72-12-9-27-50-87-98-79-4-81-67-8-76-59-26-24

-18-57-47-2-5-71-60-85-20-74-53-29-14-56-46-64-33-89-11-1

at cost 132

(C 2,

Bibliography

1. Abdelrahman, Tarek S. and Trevor N. Mudge. " Parallel Branch and Bound Algorithms
on Hypercube Multiprocessors," The Third Conference on Hypercube Concurrent Computers
and Applications, 32: 1492-1499 The Association for Computing Machinery, 1988.

2. Aho, Alfred B. and others. The Design and Analysis of Computer Algorithms Reading MA:
Addison-Wesley Publishing Company, 1974.

3. Antonoff, Michael. "Software by Natural Selection," Popular Science: 70-74 (October 1991).

4. Beard, Ralph A. Determination of Algorithm Parallelism in NP Complete Problems for Dis-
tributed Architectures. MS thesis, AFIT/GE-90D. School of Engineering, Air Force Institute
of Technology (AU), Wright-Patterson AFB OH, December 1990.

5. Bell, Gordon. "The Future of High Performance Computers in Science and Engineering,"
Communications of the ACM, 32:1091-1101 (December 1989)

6. Bomans, Luc and Dirk Roose. "Benchmarking the iPSC/2 hypercube multicomputer", Con-
currency :3-18 (September 1989)

7. Bourgeois, L. and J. Lassalle. "An Extension of the Munkres Algorithm for the Assignment
Problem to Rectangular Matrices", Communications of the ACM, 14 (December 1971)

8. Brassard, Gilles and Paul Brantley. Algorithmics: Theory and Practice. Englewood Cliffs
NJ: Prentice Hall, 1988

9. Carpenter, Capt Barry A. Implementation and Performance Analysis of Parallel Assignment
Algorithms on a Hypercube Computer. MS thesis, AFIT/GE-87D. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1987.

10. Christofides, Nicos Graph Theory: An Algorithmic Approach. London: Academic Press, 1975

11. Cvetanovic, Z. and C. Nofsinger. " Parallel Astar Search on Message-Passing Architectures,"
Proceedings of the Twenty-Third Annual Hawaii International Conference on System Sci-
ences, 1 , Architecture Tract,: 82-90 (January 1990)

12. DeCegama, Angel L. Parallel Processing Architectures and VLSI Hardware Volume 1. Engle-
wood Cliffs NJ: Prentice Hall, 1989.

13. Felten, Edward W. " Best-First Branch-and-Bound on a Hypercube," The Third Conference
on Hypercube Concurrent Computers and Applications, 1: 1500-1504, The Association for
Computing Machinery, 1988.

14. Garey M. R. and D. S. Johnson. Computers and Intractability - A Guide to the Theory of
NP-Completness. W. H. Freeman and Company, San Francisco, 1979.

15. Hays, John P. and Trevor Mudge. "Hypercube Supercomputers," Proceedings of the IEEE
Vol. 77, No. 12: 1829-1840 (December 1989).

16. Hennessy, John L. and Norman P. Jouppi. " Computer Technology and Architecture: An
Evolving Interaction," IEEE Computer, 2: 18-29, 1991

17. Intel Corporation. Parallel Programming Primer. Order number 311914-001. Beaverton Or,
March 1990.

18. Jansen, J. M. and F. W. Sijstermans. "Parallel Branch-and Bound Algorithms," Future
Generation Computer Systems, 4: 271-279 (December 1989).

BIB I

19. Korf, Richard E. "Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,"
Artzficial Intelligence, 27: 97-109 (1985)

20. Kumar,Vipin, K. Ramesh and V. Nageshware Rao. " Parallel Best-first Search of State-Space
Graphs: A summary of Results," Automated Reasoning: 122-128

21. Li, Guo-Jie and Benjamin W. Wah. "Computational Efficiency of Parallel Combinatorial OR-
Tree Searches," IEEE Transactions on Software Engineering Vol. 16 No. 1: 13-30 (January
1990).

22. Ma, Richard P. and others, "A Dynamic Load Balancer for a Parallel Branch and Bound
Algorithm," The Third Conference on Hypercube Concurrent Computers and Applications, 2:
1505-1513, The Association for Computing Machinery, 1988.

23. Miller, D. L. and J. F. Penky. "Results From a Parallel Branch and Bound Algorithm for
the Asymmetric Traveling Salesman Problem," Operations Research Letters, 8: 129-135 (July
1989).

24. Mraz, Capt Richard T. " Performance Evaluation of Parallel Branch and Bound Search
with the Intel iPSC/2 Hypercube Supercomputer. " MS thesis, AFIT/GE-90D. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December
1986.

25. Pangas, Roy P. and Wooster E. Daniels. "Branch-and-Bound Algorithms on a Hyper-
cube," The Third Conference on Hypercube Concurrent Computers and Applications, 2: 1505-
1513, The Association for Computing Machinery, 1988.

26. Pennington, R. J. and others. "Parallel Implementations of a Branch and Bound Algorithm
for the Optimization of Distributed Database Computer Networks" IEEE Region 5 Confer-
ence. Piscataway, NJ: IEEE Service Center 1988.

27. Pearl, Judea. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Read-
ing, MA: Addison Wesley Publiching Company, 1985.

28. Quinn, Michael J. "Analysis and Implementation of Branch-and-Bound Algorithms on a
Hypercube Multicomputer," IEEE Transaction on Computers, 31: 384-387 (March 1990).

29. Ragsdale, Susann. and others. Parallel Programming Primer, Intel Corporation, order num-
ber 311914-001.

30. Saletore, Vikram, A. Machine Independent Parallel Execution of Speculative Computations.
PhD. dissertation. University of Illinois at Urbana-Champaign, Urbana IL, 1991.

31. Schwan, Karsten and others. "Process and Workload Migration for a Parallel Branch and
Bound Algorithm on a Hypercube Multicomputer," The Third Conference on Hypercube
Concurrent Computers and Applications, 2: 1520-1530, The Association for Computing Ma-
chinery, 1988.

32. Stone, Harold S. and John Cocke. "Computer Architecture in the 1990s," IEEE Computer,
2: 30-38, 1991.

33. Work, 2LT Paul R. Parallelizing Serial Code in a Distributed Processing Environment with
an Application in High Frequency Electromag'ietic Scattering. MS thesis, AFIT/GCS-91D.
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1990.

BIB 1H

VITA

Capt Joel S. Garman was born on January 25, 1954 in Glasgow, KY. He joined the Air Force on

July 18, 1974 and was assigned to the 90th Strategic Missile Wing at F.E. Warren AFB, Chyenne,

WY as a Minuteman Ill missile systems analyst. He was accepted into the Airman's Education and

Commissioning Program (AECP) and graduated from the University of Central Florida in May of

1985 with a BSEE degree. After Officer's Training School (OTS), Capt Garmon was assigned to SA-

ALC as an electrical engineer working on the F-5, T-38, T-37, OA-37, OV-10, and 0-2 aircraft

systems.

Permanent address
9434 Valley Way
San Antonio, TX 78250

March 1992 Master's Thesis

Implementation and Analysis of NP-Complete Algorithms on a Distributed
Memory Computer

Joel S Garmon, Captain, USAF

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GE/ENG/92M-O1

Approved for public release; distribution unlimited

The purpose of this research is to explore methods used to parallelize NP-complete problems and the degree of
improvement that can be realized using different methods of load balancing.
A serial and four parallel A* branch and bound algorithms were implemented and executed on an Intel iPSC/2
hypercube computer. One parallel algorithm used a global, or centralized, list to store unfinished work and the
other three parallel algorithms used a distributed list to store unfinished work locally on each prccessor.
The three distributed list algorithms are: without load balancing, with load balancing, and with load balancing
and work distribution. The difference between load balancing and work distribution is load balancing only occurs
when a processor becomes idle and work distribution attempts to emulate the global list of unfinished work by
sharing work throughout the algorithm, not just at the end. Factors which effect when and how often to load
balance are also investigated.
Which algorithm performed best depended on how many processors were used to solve the problem. For a small

number of processors, 16 or less, the centralized list algorithm easily outperformed all others. However, after
16 processors, the overhead of all processors trying to communicate and request work from the same centralized
list began to outweigh any benefits of having a global list. Now the distributed list algorithms began to perform
best. When using 32 processors, the distributed list with load balancing and work distribution out performed

the other algorithms.

Search, Hlypercube, Parallel, NP-complete 188

IUNCLASSIFIED) UNCLASSIFIED) UNCLASSIFIEI) DTl

